You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / 5 -3 / 3 2 11 / 3 -2 1 Return 3. The paths that sum to 8 are: 1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11
题目要求一棵树中节点和为指定数值的路径数。这条路径不需要从根节点开始,所以需要一个数组维护每个节点的值,使用前序遍历二叉树,然后利用递归将每一条从根节点出的的元素放入数组中,如果这条路径及其子路径的和等于sum,令cnt+1,然后将最后一个元素弹出。接着递归下一个节点。进行路径计算。直到递归结束返回cnt即可。
class Solution { public: vector<int> preSum; int pathSum(TreeNode* root, int sum) { if (root == nullptr) return 0; preSum.push_back(root->val); int cnt = pathSum(root->left, sum) + pathSum(root->right, sum); int tmpSum = 0; for (int i = preSum.size() - 1; i >= 0; i--) { tmpSum += preSum[i]; if (tmpSum == sum) cnt++; } preSum.pop_back(); return cnt; } }; // 13 ms
一个简洁的递归写法。
class Solution { public: int pathSum(TreeNode* root, int sum) { if (root == nullptr) return 0; return dfs(root, sum) + pathSum(root->left, sum) + pathSum(root->right, sum); } int dfs(TreeNode* node, int sum) { if (node == nullptr) return 0; return (node->val == sum ? 1 : 0) + dfs(node->left, sum - node->val) + dfs(node->right, sum - node->val); } }; // 22 ms