Given a string containing digits from 2-9
inclusive, return all possible letter combinations that the number could represent.
A mapping of digit to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.
Example:
Input: "23" Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
思路:知道要加字母,但是不知道具体的怎么加。
String candidate = candidates.get(sb.length());把一个字母里的元素拿出来是关键。当前长度,可以取出最后一位,好吧。
其实回溯法的backtrace函数里面不用写cc了,主函数写了就行了。backtrace函数里面只写退出函数就行了,这道题是sb的长度等于
if (digits == null || digits.length() == 0) {
return new ArrayList();
}
cc直接返回一个新的就行了。先不用新建,新建会指定成string的类型。
sb的删除要用:deleteCharAt
backtrace里面也是sb,因为已经append了
Your input "23" stdout candidates = [abc, def] candidate = abc candidate.charAt(i) = a candidates = [abc, def] candidate = def candidate.charAt(i) = d candidate.charAt(i) = e candidate.charAt(i) = f candidate.charAt(i) = b candidates = [abc, def] candidate = def candidate.charAt(i) = d candidate.charAt(i) = e candidate.charAt(i) = f candidate.charAt(i) = c candidates = [abc, def] candidate = def candidate.charAt(i) = d candidate.charAt(i) = e candidate.charAt(i) = f Output ["ad","ae","af","bd","be","bf","cd","ce","cf"] Expected ["ad","ae","af","bd","be","bf","cd","ce","cf"]
class Solution { private String[] KEYS = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; public List<String> letterCombinations(String digits) { //cc List<String> candidates = new ArrayList<>(); if (digits == null || digits.length() == 0) { return new ArrayList(); } for (int i = 0; i < digits.length(); i++) { candidates.add(KEYS[digits.charAt(i) - '0']); } List<String> results = new ArrayList<>(); backtrace(candidates, new StringBuilder(), results); return results; } public void backtrace(List<String> candidates, StringBuilder sb, List<String> results) { //exit if (sb.length() == candidates.size()) { results.add(sb.toString()); return ; } String candidate = candidates.get(sb.length()); for (int i = 0; i < candidate.length(); i++) { sb.append(candidate.charAt(i)); backtrace(candidates, sb, results); sb.deleteCharAt(sb.length() - 1); } } }