• 研究微信红包分配算法之Golang版


    今天来看一下红包的分配,参考几年前流传的微信红包分配算法,今天用Golang实现一版,并测试验证结果。

    微信红包的随机算法是怎样实现的?https://www.zhihu.com/question/22625187

    红包核心算法

    分配:红包里的金额怎么算?为什么出现各个红包金额相差很大?
    答:随机,额度在0.01和(剩余平均值*2)之间
    

    每次拆红包,额度范围在【0.01 ~ 剩余平均值*2】之间,这是很妙的一个设计。
    比如发100元,共发10个红包,那么平均值10元,第一个拆出来的红包的额度在0.01元~20元之间波动,可以确保不会一个人把红包全领了的情况,因为最大就是剩余平均值的2倍。
    比如发0.1元,共发10个红包,每个0.01元,这种就不用随机算法了,直接平均分配吧。

    No bb, show your code!

    设计红包结构体

    //reward.go
    //红包
    type Reward struct {
    	Count          int   //个数
    	Money          int   //总金额(分)
    	RemainCount    int   //剩余个数
    	RemainMoney    int   //剩余金额(分)
    	BestMoney int   //手气最佳金额
    	BestMoneyIndex int   //手气最佳序号
    	MoneyList      []int //拆分列表
    }
    
    • 我这里用int整型做金额计算,可以避免浮点数精度问题,展示的时候除100,就是元单位了。

    核心红包随机分配算法

    //reward.go
    // 抢红包
    func GrabReward(reward *Reward) int {
    	if reward.RemainCount <= 0 {
    		panic("RemainCount <= 0")
    	}
    	//最后一个
    	if reward.RemainCount - 1 == 0 {
    		money := reward.RemainMoney
    		reward.RemainCount = 0
    		reward.RemainMoney = 0
    		return money
    	}`
    	//是否可以直接0.01
    	if (reward.RemainMoney / reward.RemainCount) == 1 {
    		money := 1
    		reward.RemainMoney -= money
    		reward.RemainCount--
    		return money
    	}
    
    	//红包算法参考 https://www.zhihu.com/question/22625187
    	//最大可领金额 = 剩余金额的平均值x2 = (剩余金额 / 剩余数量) * 2
    	//领取金额范围 = 0.01 ~ 最大可领金额
    	maxMoney := int(reward.RemainMoney / reward.RemainCount) * 2
    	rand.Seed(time.Now().UnixNano())
    	money := rand.Intn(maxMoney)
    	for money == 0 {
    		//防止零
    		money = rand.Intn(maxMoney)
    	}
    	reward.RemainMoney -= money
    	//防止剩余金额负数
    	if reward.RemainMoney < 0 {
    		money += reward.RemainMoney
    		reward.RemainMoney = 0
    		reward.RemainCount = 0
    	} else {
    		reward.RemainCount--
    	}
    	return money
    }
    

    分配算法完成后,验证一下,用单元测试的办法验证

    //reward_test.go
    func TestGrabReward2(t *testing.T) {
    	chanReward := make(chan Reward)
    	rand.Seed(time.Now().UnixNano())
    	go func(){
    		//随机生成1000个红包
    		for i:=0; i < 1000; i++  {
    			//随机红包个数 1~50
    			count := rand.Intn(50) + 1
    			//随机红包总金额 1~100元
    			money := rand.Intn(10000) + 100
    
    			avg := money / count
    			for avg == 0 {
    				//保证金额足够分配
    				count = rand.Intn(50) + 1
    				money = rand.Intn(10000) + 100
    				avg = money / count
    			}
    			reward := Reward{Count: count, Money: money,
    				RemainCount: count, RemainMoney: money}
    
    			chanReward <- reward
    		}
    		close(chanReward)
    	}()
    
    	//打印拆包列表,带手气最佳
    	for reward := range chanReward {
    		for i := 0; reward.RemainCount > 0; i++ {
    			money := GrabReward(&reward)
    			if money > reward.BestMoney {
    				reward.BestMoneyIndex, reward.BestMoney = i, money
    			}
    			reward.MoneyList = append(reward.MoneyList, money)
    		}
    		t.Logf("总个数:%d, 总金额:%.2f", reward.Count, float32(reward.Money)/100)
    		for i := range reward.MoneyList {
    			money := reward.MoneyList[i]
    			isBest := ""
    			if reward.BestMoneyIndex == i {
    				isBest = " ** 手气最佳"
    			}
    			t.Logf("money_%d : (%.2f)%s
    ", i+1, float32(money)/100, isBest)
    		}
    		t.Log("-------")
    	}
    
    }
    

    运行结果

        reward_test.go:106: 总个数:7, 总金额:86.59
        reward_test.go:113: money_1 : (16.29)
        reward_test.go:113: money_2 : (4.93)
        reward_test.go:113: money_3 : (22.89) ** 手气最佳
        reward_test.go:113: money_4 : (3.17)
        reward_test.go:113: money_5 : (20.51)
        reward_test.go:113: money_6 : (0.12)
        reward_test.go:113: money_7 : (18.68)
        reward_test.go:115: -------
        reward_test.go:106: 总个数:10, 总金额:53.79
        reward_test.go:113: money_1 : (3.56)
        reward_test.go:113: money_2 : (6.39)
        reward_test.go:113: money_3 : (0.36)
        reward_test.go:113: money_4 : (2.60)
        reward_test.go:113: money_5 : (10.11)
        reward_test.go:113: money_6 : (5.76)
        reward_test.go:113: money_7 : (2.84)
        reward_test.go:113: money_8 : (14.04) ** 手气最佳
        reward_test.go:113: money_9 : (1.95)
        reward_test.go:113: money_10 : (6.18)
        reward_test.go:115: -------
    

    性能测试

    //性能测试
    func BenchmarkGrabReward(b *testing.B) {
    	chanReward := make(chan *Reward, b.N)
    	rand.Seed(time.Now().UnixNano())
    	go func(){
    		//随机生成红包
    		for i:=0; i < b.N; i++  {
    			//随机红包个数 1~50
    			count := rand.Intn(50) + 1
    			//随机红包总金额 1~100元
    			money := rand.Intn(10000) + 100
    
    			avg := money / count
    			for avg == 0 {
    				//保证金额足够分配
    				count = rand.Intn(50) + 1
    				money = rand.Intn(10000) + 100
    				avg = money / count
    			}
    			reward := Reward{Count: count, Money: money,
    				RemainCount: count, RemainMoney: money}
    
    			chanReward <- &reward
    		}
    		close(chanReward)
    	}()
    
    	//打印拆包列表,带手气最佳
    	for reward := range chanReward {
    		for i := 0; reward.RemainCount > 0; i++ {
    			money := GrabReward(reward)
    			if money > reward.BestMoney {
    				reward.BestMoneyIndex, reward.BestMoney = i, money
    			}
    			reward.MoneyList = append(reward.MoneyList, money)
    		}
    		_ = fmt.Sprintf("总个数:%d, 总金额:%.2f", reward.Count, float32(reward.Money)/100)
    		for i := range reward.MoneyList {
    			money := reward.MoneyList[i]
    			isBest := ""
    			if reward.BestMoneyIndex == i {
    				isBest = " ** 手气最佳"
    			}
    			_ = fmt.Sprintf("money_%d : (%.2f)%s
    ", i+1, float32(money)/100, isBest)
    		}
    	}
    }
    

    性能测试结果

    BenchmarkGrabReward-8   	    4461	    244842 ns/op
    //4核8线的CPU运运行4461次,平均每次244842纳秒=0.244842毫秒
    

    性能可以说是很优秀的,这是因为这个测试是纯内存计算,没有网络IO,没有存储写盘,纯粹是为了验证算法,所以性能是很高的。
    完成!

  • 相关阅读:
    (转载) mysql中,option是保留字段么?
    (转载)腾讯CMEM的PHP扩展
    (转载)一句简单命令重启nginx
    (转载)四种常见的 POST 提交数据方式
    (转载)完美解决PHP中文乱码问题
    (转载)file_get_contents("php://input")
    (转载)PHP 下 CURL 通过 POST 提交表单失败的原因之一与解决办法
    (转载)php array_merge 和 两数组相加区别
    Immutable-不变模式与不变类
    zookeeper 编程框架 curator
  • 原文地址:https://www.cnblogs.com/imbin/p/12320661.html
Copyright © 2020-2023  润新知