Legend
Link \(\textrm{to Codeforces}\).
给定长度为 \(n\ (4 \le n \le 200\ 000)\) 的数字串,\(q\ (1 \le q \le 200\ 000)\) 次询问,每次询问一个连续子串 \([l,r]\),询问:
- 使得这个连续子串内不存在子序列 \(2016\) 并存在子序列 \(2017\) 至少要删去多少个数位。
Editorial
考虑暴力怎么做,有个很显然的在 \(\textrm{trie}\) 上 \(\textrm{dp}\) 的做法(这个 \(\textrm{trie}\) 的大小只有 \(5\)),即记录走到某个节点的最少删除次数。
那么你只需要把这个 \(\textrm{dp}\) 用矩阵转移优化一下就好了。
\[\begin{bmatrix}
[s_i = 2] & \infty & \infty & \infty & \infty \\
[s_i \not= 2]\infty & [s_i = 0] & \infty & \infty & \infty \\
\infty & [s_i \not= 0]\infty & [s_i=1] &\infty & \infty \\
\infty & \infty & [s_i\not = 1]\infty & [s_i=6\or s_i=7] & \infty \\
\infty & \infty & \infty & [s_i \not= 7]\infty & [s_i=6] \\
\end{bmatrix}
\times
\begin{bmatrix}
ST \\
a_2 \\
a_0 \\
a_1 \\
a_7 \\
\end{bmatrix}
=
\]
Code
注意矩阵的相乘顺序,所以线段树里维护的因当是从区间右侧乘到左侧的矩阵。但查询的时候依然是从左子树到右子树。
注意到右侧乘的是一个向量,所以在查询的时候可以省一些常数,由于我太懒,没有去实现。
#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MX = 2e5 + 233;
int read(){
char k = getchar(); int x = 0;
while(k < '0' || k > '9') k = getchar();
while(k >= '0' && k <= '9')
x = x * 10 + k - '0' ,k = getchar();
return x;
}
struct Matrix{
int A[5][5];
Matrix(){memset(A ,0x3f ,sizeof A);}
Matrix(int num){
memset(A ,0x3f ,sizeof A);
A[0][0] = (num == 2);
A[1][0] = (num != 2) * INF;
A[1][1] = (num == 0);
A[2][1] = (num != 0) * INF;
A[2][2] = (num == 1);
A[3][2] = (num != 1) * INF;
A[3][3] = (num == 6 || num == 7);
A[4][3] = (num != 7) * INF;
A[4][4] = (num == 6);
}
Matrix operator *(const Matrix &B)const{
Matrix C;
for(int i = 0 ; i < 5 ; ++i)
for(int j = 0 ; j < 5 ; ++j)
for(int k = 0 ; k < 5 ; ++k)
C.A[i][j] = min(C.A[i][j] ,A[i][k] + B.A[k][j]);
return C;
}
void output(){
for(int i = 0 ; i < 5 ; ++i)
for(int j = 0 ; j < 5 ; ++j)
printf("%d%c" ,A[i][j] ," \n"[j == 4]);
puts("||||||||||||||||||||||||||||||||||||||||||");
}
};
struct node{
int l ,r;
Matrix s;
node *lch ,*rch;
node(int _l ,int _r ,int num ,node *L ,node *R){
s = Matrix(num);
l = _l ,r = _r;
lch = L ,rch = R;
}
void pushup(){s = rch->s * lch->s;}
}*root;
node *build(int l ,int r ,int *A){
node *x = nullptr;
if(l == r) x = new node(l ,r ,A[l] ,nullptr ,nullptr);
else{int mid = (l + r) >> 1;
node *lch = build(l ,mid, A);
node *rch = build(mid + 1 ,r ,A);
x = new node(l ,r ,-1 ,lch ,rch);
x->pushup();
}return x;
}
void query(node *x ,int l ,int r ,Matrix &Ans){
if(l <= x->l && x->r <= r) return Ans = x->s * Ans ,void();
if(l <= x->lch->r) query(x->lch ,l ,r ,Ans);
if(r > x->lch->r) query(x->rch ,l ,r ,Ans);
}
char str[MX];
int A[MX];
int main(){
int n = read() ,q = read();
cin >> (str + 1);
for(int i = 1 ; i <= n ; ++i){
A[i] = str[i] - '0';
// printf("%d\n" ,A[i]);
}
root = build(1 ,n ,A);
while(q--){
int l = read() ,r = read();
Matrix Ans = Matrix();
Ans.A[0][4] = 0;
query(root ,l ,r ,Ans);
// Ans.output();
printf("%d\n" ,Ans.A[4][4] > n ? -1 : Ans.A[4][4]);
}
return 0;
}