LeNet-5是一种用于手写字符识别的卷积神经网络(效果见这),为了熟悉theano的卷积神经网络工具包,对它进行了研究。
一、准备工作
1.Windows7
2.安装Enthought Canopy(下载)
3.安装Theano
->easy_install pip
->pip install theano
二、模型及代码
1. 模型
1). 输入图像是32x32的大小,局部滑动窗的大小是5x5,由于不考虑对边界进行拓展,则滑动窗将有28x28个位置,也就是C1层的大小是28x28。这里设定有六个不同的C1层,每个C1层内的权值是相同的。
2). S2层是一个下采样层,由四个点下采样为一个点,也就是4个数的加权平均。这里采用max-pooling,取四个点的最大值。下采样后,S2层的大小是14x14。
3). 根据对S1层的理解,很容易知道C3层的大小为10x10,只不过,C3层变成了16个10x10网络。如果S2层只有1个平面,那么由S2层得到C3就和由输入层得到C1层是完全一样的。但是,S2层有多层,那么,我们只需要按照一定的顺序组合这些层就可以了。具体的组合规则如下:
例如对于C3层第0张特征图,其每一个节点与S2层的第0张特征图,第1张特征图,第2张特征图,总共3个5x5个节点相连接。C3层每一张特征映射图的权值是相同的。
4). S4 层是在C3层基础上下采样,方法与S2层相同。
2. ConvPoolLayer
class ConvPoolLayer(object): """ 卷积层 """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): """ rng 类型:numpy.random.RandomState 描述:用于初始化权值的随机数产生器 input 类型:theano.tensor.dtensor4 描述:图像数据 filter_shape 类型:长度为4的元组或序列 描述:(过滤器数量,输入的特征图数量,过滤器高度,过滤器宽度) image_shape 类型:长度为4的元组或序列 描述:(batch size,输入的特征图数量,图像高度,图像宽度) poolsize 类型:长度为2的元组或序列 描述:下采样系数(#rows, #cols) """ assert image_shape[1] == filter_shape[1] self.input = input # 每个神经元的输入 = 输入的特征图数量 * 过滤器高度 * 过滤器宽度 fan_in = numpy.prod(filter_shape[1:]) # 每个神经元的输出 = (输出的特征图数量 * 过滤器高度 * 过滤器宽度)/ 池大小 fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)) # 用随机数初始化权值 W_bound = numpy.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # 初始化偏差--每个输出特征图对应一个偏差 b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # 对输入的特征图求卷积 conv_out = conv.conv2d( input=input, filters=self.W, filter_shape=filter_shape, image_shape=image_shape ) # 对每张求卷积后每张特征图用最大池法进行下采样 pooled_out = downsample.max_pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # 添加偏差 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) # 保存本层的参数 self.params = [self.W, self.b]
3. HiddenLayer
class HiddenLayer(object): """ 隐层 """ def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ rng 类型:numpy.random.RandomState 描述:用于初始化权值的随机数产生器 input 类型:theano.tensor.dmatrix 描述:输入数据 n_in 类型:int 描述:输入数据的大小 n_out 类型:int 描述:神经元数量 activation 类型:theano.Op或函数 描述:非线性,用于隐层的激活 """ self.input = input # 初始化权值 if W is None: W_values = numpy.asarray( rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) # 初始化偏差 if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b # 激活 lin_output = T.dot(input, self.W) + self.b self.output = ( lin_output if activation is None else activation(lin_output) ) self.params = [self.W, self.b]
4. LogisticRegression
class LogisticRegression(object): """ 逻辑回归 """ def __init__(self, input, n_in, n_out): """ input 类型:theano.tensor.TensorType 描述:输入数据 n_in 类型:int 描述:输入单元的个数 n_out 类型:int 描述:输出单元的个数 """ self.W = theano.shared( value=numpy.zeros( (n_in, n_out), dtype=theano.config.floatX ), name='W', borrow=True ) self.b = theano.shared( value=numpy.zeros( (n_out,), dtype=theano.config.floatX ), name='b', borrow=True ) # 分类 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) # 分类结果 self.y_pred = T.argmax(self.p_y_given_x, axis=1) self.params = [self.W, self.b] def negative_log_likelihood(self, y): """ 返回该模型的对于某一指定变量的最小负的对数似然函数值 """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): # 检查与预测值是否有相同的维数 if y.ndim != self.y_pred.ndim: raise TypeError( 'y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type) ) # 检查数据类型是否正确 if y.dtype.startswith('int'): return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError()
# -*- coding: utf-8 -*- import numpy import cPickle import gzip import os import sys import time import theano import theano.tensor as T from theano.tensor.signal import downsample from theano.tensor.nnet import conv class ConvPoolLayer(object): """ 卷积层 """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): """ rng 类型:numpy.random.RandomState 描述:用于初始化权值的随机数产生器 input 类型:theano.tensor.dtensor4 描述:预处理了的图像数据 filter_shape 类型:长度为4的元组或序列 描述:(过滤器数量,输入的特征图数量,过滤器高度,过滤器宽度) image_shape 类型:长度为4的元组或序列 描述:(batch size,输入的特征图数量,图像高度,图像宽度) poolsize 类型:长度为2的元组或序列 描述:下采样系数(#rows, #cols) """ assert image_shape[1] == filter_shape[1] self.input = input # 每个神经元的输入 = 输入的特征图数量 * 过滤器高度 * 过滤器宽度 fan_in = numpy.prod(filter_shape[1:]) # 每个神经元的输出 = (输出的特征图数量 * 过滤器高度 * 过滤器宽度)/ 池大小 fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)) # 用随机数初始化权值 W_bound = numpy.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # 初始化偏差--每个输出特征图对应一个偏差 b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # 对输入的特征图求卷积 conv_out = conv.conv2d( input=input, filters=self.W, filter_shape=filter_shape, image_shape=image_shape ) # 对每张求卷积后每张特征图用最大池法进行下采样 pooled_out = downsample.max_pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # 添加偏差 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) # 保存本层的参数 self.params = [self.W, self.b] class HiddenLayer(object): """ 隐层 """ def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ rng 类型:numpy.random.RandomState 描述:用于初始化权值的随机数产生器 input 类型:theano.tensor.dmatrix 描述:输入数据 n_in 类型:int 描述:输入数据的大小 n_out 类型:int 描述:神经元数量 activation 类型:theano.Op或函数 描述:非线性,用于隐层的激活 """ self.input = input # 初始化权值 if W is None: W_values = numpy.asarray( rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) # 初始化偏差 if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b # 激活 lin_output = T.dot(input, self.W) + self.b self.output = ( lin_output if activation is None else activation(lin_output) ) self.params = [self.W, self.b] class LogisticRegression(object): """ 逻辑回归 """ def __init__(self, input, n_in, n_out): """ input 类型:theano.tensor.TensorType 描述:输入数据 n_in 类型:int 描述:输入单元的个数 n_out 类型:int 描述:输出单元的个数 """ self.W = theano.shared( value=numpy.zeros( (n_in, n_out), dtype=theano.config.floatX ), name='W', borrow=True ) self.b = theano.shared( value=numpy.zeros( (n_out,), dtype=theano.config.floatX ), name='b', borrow=True ) self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) self.y_pred = T.argmax(self.p_y_given_x, axis=1) self.params = [self.W, self.b] def negative_log_likelihood(self, y): """ 返回该模型的对于某一指定变量的最小负的对数似然函数值 """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): # 检查与预测值是否有相同的维数 if y.ndim != self.y_pred.ndim: raise TypeError( 'y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type) ) # 检查数据类型是否正确 if y.dtype.startswith('int'): return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def load_data(dataset): data_dir, data_file = os.path.split(dataset) if data_dir == "" and not os.path.isfile(dataset): # Check if dataset is in the data directory. new_path = os.path.join( os.path.split(__file__)[0], "data", dataset ) if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz': dataset = new_path if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz': import urllib origin = ( 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' ) print 'Downloading data from %s' % origin urllib.urlretrieve(origin, dataset) print '... loading data' # Load the dataset f = gzip.open(dataset, 'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() def shared_dataset(data_xy, borrow=True): """ Function that loads the dataset into shared variables """ data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)] return rval def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20, 50], batch_size=500): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = ConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (nkerns[0], nkerns[1], 4, 4) layer1 = ConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer( rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer3.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( [index], layer3.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-1 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__': evaluate_lenet5()