• storm源码分析之topology提交过程


    storm集群上运行的是一个个topology,一个topology是spouts和bolts组成的图。当我们开发完topology程序后将其打成jar包,然后在shell中执行storm jar xxxxxx.jar xxxxxxxClass就可以将jar包上传到storm集群的nimbus上,并执行topology。本文主要分析下topology的jar包是如何上传到nimbus上的。首先我们从storm的jar命令入手,jar命令的实现位于storm根目录的bin/storm文件里。定义如下:

    def jar(jarfile, klass, *args):
       """Syntax: [storm jar topology-jar-path class ...]

       Runs the main method of class with the specified arguments.
       The storm jars and configs in ~/.storm are put on the classpath.
       The process is configured so that StormSubmitter
       (http://nathanmarz.github.com/storm/doc/backtype/storm/StormSubmitter.html)
       will upload the jar at topology-jar-path when the topology is submitted.
       """
       exec_storm_class(
           klass,
           jvmtype="-client",
           extrajars=[jarfile, USER_CONF_DIR, STORM_DIR + "/bin"],
           args=args,
           jvmopts=[' '.join(filter(None, [JAR_JVM_OPTS, "-Dstorm.jar=" + jarfile]))])

    jar命令是由python实现的,很奇怪为什么不用clojure实现呢?(不得而知)。jarfile表示jar包的位置;klass表示topology的入口,也就是有main函数的类;*args表示传递给main函数的参数。jvmtype="-client"表示指定jvm类型为client类型(jvm有两种类型client和server,服务器端默认为server类型);extrajars集合用于存放编译topology的jar包时,所有依赖jar包的路径;jvmopts集合存放以jvm参数,这里比较重要的是-Dstorm.jar参数,这个参数的值是jarfile,这样在运行submitTopology方法时就可以通过storm.jar参数获得jar包的路径了(通过jvm参数进行方法参数传递)exec_storm_class函数的逻辑比较简单,具体实现如下:

    def exec_storm_class(klass, jvmtype="-server", jvmopts=[], extrajars=[], args=[], fork=False):
       global CONFFILE
       all_args = [
           "java", jvmtype, get_config_opts(),
           "-Dstorm.home=" + STORM_DIR,
           "-Djava.library.path=" + confvalue("java.library.path", extrajars),
           "-Dstorm.conf.file=" + CONFFILE,
           "-cp", get_classpath(extrajars),
       ] + jvmopts + [klass] + list(args)
       print "Running: " + " ".join(all_args)
       if fork:
           os.spawnvp(os.P_WAIT, "java", all_args)
       else:
           os.execvp("java", all_args) # replaces the current process and never returns

    get_config_opts()获取jvm的默认配置信息,confvalue("java.library.path", extrajars)获取storm使用的本地库JZMQ加载路径,get_classpath(extrajars)获取所有依赖jar包的完整路径,然后拼接一个java -cp命令运行topology的main方法。接下来程序执行流程转移到topology的main方法内,我们以storm-starter项目中的wordCountTopology的main方法为例:

    public static void main(String[] args) throws Exception {

       TopologyBuilder builder = new TopologyBuilder();

       builder.setSpout("spout", new RandomSentenceSpout(), 6);

       builder.setBolt("split", new SplitSentence(), 12).shuffleGrouping("spout");
       builder.setBolt("count", new WordCount(), 10).fieldsGrouping("split", new Fields("word"));

       Config conf = new Config();
       conf.setDebug(true);


       if (args != null && args.length > 0) {
         conf.setNumWorkers(4);

         StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
       }
       else {
         conf.setMaxTaskParallelism(3);

         LocalCluster cluster = new LocalCluster();
         cluster.submitTopology("word-count", conf, builder.createTopology());

         Thread.sleep(10000);

         cluster.shutdown();
       }
     }

    main方法构建topology后,调用StormSubmitter类的submitTopology方法提交topology。submitTopology方法如下:

    /**
        * Submits a topology to run on the cluster. A topology runs forever or until
        * explicitly killed.
        *
        *
        * @param name the name of the storm.
        * @param stormConf the topology-specific configuration. See {@link Config}.
        * @param topology the processing to execute.
        * @throws AlreadyAliveException if a topology with this name is already running
        * @throws InvalidTopologyException if an invalid topology was submitted
        */
           public static void submitTopology(String name, Map stormConf, StormTopology topology)
               throws AlreadyAliveException, InvalidTopologyException {
                   submitTopology(name, stormConf, topology, null);
               }
       
       /**
        * Submits a topology to run on the cluster. A topology runs forever or until
        * explicitly killed.
        *
        *
        * @param name the name of the storm.
        * @param stormConf the topology-specific configuration. See {@link Config}.
        * @param topology the processing to execute.
        * @param options to manipulate the starting of the topology
        * @throws AlreadyAliveException if a topology with this name is already running
        * @throws InvalidTopologyException if an invalid topology was submitted
        */
       public static void submitTopology(String name, Map stormConf, StormTopology topology, SubmitOptions opts)
           throws AlreadyAliveException, InvalidTopologyException {
           if(!Utils.isValidConf(stormConf)) {
               throw new IllegalArgumentException("Storm conf is not valid. Must be json-serializable");
           }
           stormConf = new HashMap(stormConf);
           stormConf.putAll(Utils.readCommandLineOpts());
           Map conf = Utils.readStormConfig();
           conf.putAll(stormConf);
           try {
               String serConf = JSONValue.toJSONString(stormConf);
               if(localNimbus!=null) {
                   LOG.info("Submitting topology " + name + " in local mode");
                   localNimbus.submitTopology(name, null, serConf, topology);
               } else {
                   NimbusClient client = NimbusClient.getConfiguredClient(conf);
                   if(topologyNameExists(conf, name)) {
                       throw new RuntimeException("Topology with name `" + name + "` already exists on cluster");
                   }
                   submitJar(conf);
                   try {
                       LOG.info("Submitting topology " +  name + " in distributed mode with conf " + serConf);
                       if(opts!=null) {
                           client.getClient().submitTopologyWithOpts(name, submittedJar, serConf, topology, opts);                    
                       } else {
                           // this is for backwards compatibility
                           client.getClient().submitTopology(name, submittedJar, serConf, topology);                                            
                       }
                   } catch(InvalidTopologyException e) {
                       LOG.warn("Topology submission exception", e);
                       throw e;
                   } catch(AlreadyAliveException e) {
                       LOG.warn("Topology already alive exception", e);
                       throw e;
                   } finally {
                       client.close();
                   }
               }
               LOG.info("Finished submitting topology: " +  name);
           } catch(TException e) {
               throw new RuntimeException(e);
           }
       }

    submitTopology方法主要完成三件工作:

    1. 配置参数
    把命令行参数放在stormConf, 从conf/storm.yaml读取配置参数到conf, 再把stormConf也put到conf, 可见命令行参数的优先级更高,将stormConf转化为Json, 因为这个配置是要发送到服务器的

    2. 调用submitJar方法

    submitJar(conf)
           private static void submitJar(Map conf) {
           if(submittedJar==null) {
               LOG.info("Jar not uploaded to master yet. Submitting jar...");
               String localJar = System.getProperty("storm.jar");
               submittedJar = submitJar(conf, localJar);
           } else {
               LOG.info("Jar already uploaded to master. Not submitting jar.");
           }
       }

    System.getProperty("storm.jar")获取jvm参数storm.jar的值,即topology jar包的路径,然后调用重载方法submitJar。

    public static String submitJar(Map conf, String localJar) {
           if(localJar==null) {
               throw new RuntimeException("Must submit topologies using the 'storm' client script so that StormSubmitter knows which jar to upload.");
           }
           NimbusClient client = NimbusClient.getConfiguredClient(conf);
           try {
               String uploadLocation = client.getClient().beginFileUpload();
               LOG.info("Uploading topology jar " + localJar + " to assigned location: " + uploadLocation);
               BufferFileInputStream is = new BufferFileInputStream(localJar);
               while(true) {
                   byte[] toSubmit = is.read();
                   if(toSubmit.length==0) break;
                   client.getClient().uploadChunk(uploadLocation, ByteBuffer.wrap(toSubmit));
               }
               client.getClient().finishFileUpload(uploadLocation);
               LOG.info("Successfully uploaded topology jar to assigned location: " + uploadLocation);
               return uploadLocation;
           } catch(Exception e) {
               throw new RuntimeException(e);            
           } finally {
               client.close();
           }
       }

    StormSubmitter的本质是个Thrift Client,而Nimbus则是Thrift Server,所以所有的操作都是通过Thrift RPC来完成,submitJar首先创建client,然后调用nimbus thrift server的beginFileUpload()方法获取nimbus存放jar的目录。beginFileUpload函数如下:

    (beginFileUpload [this]
           (let [fileloc (str (inbox nimbus) "/stormjar-" (uuid) ".jar")]
             (.put (:uploaders nimbus)
                   fileloc
                   (Channels/newChannel (FileOutputStream. fileloc)))
             (log-message "Uploading file from client to " fileloc)
             fileloc
        ))

    (inbox nimbus)函数里面又调用了master-inbox函数,master-inbox主要创建storm.local.dir的值/inbox目录,并返回完整目录名,所以topology jar包的将会通过uploadChunk方法上传到nimbus上的storm.local.dir的值/inbox/stormjar-32位uuid.jar。

    3. 生成thrift client并调用nimbus thrift server的submitTopologyWithOpts或submitTopology方法(submitTopologyWithOpts或submitTopology方法定义在Nimbus.clj中),submitTopologyWithOpts如下:

    (^void submitTopologyWithOpts
           [this ^String storm-name ^String uploadedJarLocation ^String serializedConf ^StormTopology topology
            ^SubmitOptions submitOptions]
           (try
             (assert (not-nil? submitOptions))
             (validate-topology-name! storm-name)
             (check-storm-active! nimbus storm-name false)
             (let [topo-conf (from-json serializedConf)]
               (try
                 (validate-configs-with-schemas topo-conf)
                 (catch IllegalArgumentException ex
                   (throw (InvalidTopologyException. (.getMessage ex)))))
               (.validate ^backtype.storm.nimbus.ITopologyValidator (:validator nimbus)
                          storm-name
                          topo-conf
                          topology))
             (swap! (:submitted-count nimbus) inc)
             (let [storm-id (str storm-name "-" @(:submitted-count nimbus) "-" (current-time-secs))
                   storm-conf (normalize-conf
                               conf
                               (-> serializedConf
                                   from-json
                                   (assoc STORM-ID storm-id)
                                 (assoc TOPOLOGY-NAME storm-name))
                               topology)
                   total-storm-conf (merge conf storm-conf)
                   topology (normalize-topology total-storm-conf topology)
                   storm-cluster-state (:storm-cluster-state nimbus)]
               (system-topology! total-storm-conf topology) ;; this validates the structure of the topology
               (log-message "Received topology submission for " storm-name " with conf " storm-conf)
               ;; lock protects against multiple topologies being submitted at once and
               ;; cleanup thread killing topology in b/w assignment and starting the topology
               (locking (:submit-lock nimbus)
                 (setup-storm-code conf storm-id uploadedJarLocation storm-conf topology)
                 (.setup-heartbeats! storm-cluster-state storm-id)
                 (let [thrift-status->kw-status {TopologyInitialStatus/INACTIVE :inactive
                                                 TopologyInitialStatus/ACTIVE :active}]
                   (start-storm nimbus storm-name storm-id (thrift-status->kw-status (.get_initial_status submitOptions))))
                 (mk-assignments nimbus)))
             (catch Throwable e
               (log-warn-error e "Topology submission exception. (topology name='" storm-name "')")
               (throw e))))

    storm-name表示topology的名字,uploadedJarLocation表示jar包在nimbus上的位置,serializedConf表示topology的序列化的配置信息,topology参数表示thrift结构的topology,topology结构定义在storm.thrift中,如下:

    struct StormTopology {
     //ids must be unique across maps
     // #workers to use is in conf
     1: required map<string, SpoutSpec> spouts;
     2: required map<string, Bolt> bolts;
     3: required map<string, StateSpoutSpec> state_spouts;
    }

    spouts存放spout id和spout的键值对,bolts存放bolt id和bolt的键值对,StateSpoutSpec暂未实现。SpoutSpec定义如下:

    struct SpoutSpec {
     1: required ComponentObject spout_object;
     2: required ComponentCommon common;
     // can force a spout to be non-distributed by overriding the component configuration
     // and setting TOPOLOGY_MAX_TASK_PARALLELISM to 1
    }

    Bolt定义如下:

    struct Bolt {
     1: required ComponentObject bolt_object;
     2: required ComponentCommon common;
    }

    Bolt和Spout的结构相同,都是由1个ComponentObject结构和1个ComponentCommon结构组成。ComponentObject定义如下:

    union ComponentObject {
     1: binary serialized_java;
     2: ShellComponent shell;
     3: JavaObject java_object;
    }

    ComponentObject即是bolt的实现实体,它可以是以下三个类型之一:

    1、1个序列化的java对象(这个对象实现IBolt接口)
    2、1个ShellComponent对象,意味着bolt是由其他语言实现的。如果以这种方式来定义1个bolt,Storm将会实例化1个ShellBolt对象来
         负责处理基于JVM的worker进程与非JVM的component(即该bolt)实现体之间的通讯。
    3、1个JavaObject结构,这个结构告诉Storm实例化这个bolt所需要的classname和构造函数参数。这一点在你想用非JVM语言来定义topology时比较有用。这样,在你使用非JVM语言来定义topology时就可以做到既使用基于     JVM的spout或bolt,同时又不需要创建并序列化它们的Java对象。

    ComponentCommon定义如下:

    struct ComponentCommon {
     1: required map<GlobalStreamId, Grouping> inputs;
     2: required map<string, StreamInfo> streams; //key is stream id
     3: optional i32 parallelism_hint; //how many threads across the cluster should be dedicated to this component

     // component specific configuration respects:
     // topology.debug: false
     // topology.max.task.parallelism: null // can replace isDistributed with this
     // topology.max.spout.pending: null
     // topology.kryo.register // this is the only additive one
     
     // component specific configuration
     4: optional string json_conf;
    }

    GlobalStreamId定义如下:

    struct GlobalStreamId {
     1: required string componentId;
     2: required string streamId;
     #Going to need to add an enum for the stream type (NORMAL or FAILURE)
    }

    ComponentCommon定义了这个component的其他所有属性。包括:

    1、这个component接收什么stream(被定义在1个component_id到stream_id的map里,在stream做分组时用到)
    2、这个component发射什么stream以及stream的元数据(是否是direct stream,stream中field的声明)
    3、这个component的并行度
    4、这个component的配置项configuration

    (assert (not-nil? submitOptions))如果submitOptions为nil,那么assert将会抛出java.lang.AssertionError,(validate-topology-name! storm-name)验证topology的名字,validate-topology-name!定义如下:

    (defn validate-topology-name! [name]
     (if (some #(.contains name %) DISALLOWED-TOPOLOGY-NAME-STRS)
       (throw (InvalidTopologyException.
               (str "Topology name cannot contain any of the following: " (pr-str DISALLOWED-TOPOLOGY-NAME-STRS))))
     (if (clojure.string/blank? name)
       (throw (InvalidTopologyException.
               ("Topology name cannot be blank"))))))

    DISALLOWED-TOPOLOGY-NAME-STRS定义如下:

    (def DISALLOWED-TOPOLOGY-NAME-STRS #{"/" "." ":" "\"})

    包含了不允许出现在topology名字中的特殊字符,some函数的第一个参数是一个匿名函数,对DISALLOWED-TOPOLOGY-NAME-STRS集合中的每个元素应用该匿名函数,遇到第一个true则返回true。validate-topology-name!函数主要检查topology的名字中是否包含"非法字符"。check-storm-active!函数用于检查该topology的状态是否是"active"。定义如下:

    (defn check-storm-active! [nimbus storm-name active?]
     (if (= (not active?)
            (storm-active? (:storm-cluster-state nimbus)
                           storm-name))
       (if active?
         (throw (NotAliveException. (str storm-name " is not alive")))
         (throw (AlreadyAliveException. (str storm-name " is already active"))))
       ))

    nimbus是一个保存了nimbus thrift server当前状态的map,这个map是由nimbus-data函数生成的,nimbus-data函数如下:

    (defn nimbus-data [conf inimbus]
     (let [forced-scheduler (.getForcedScheduler inimbus)]
       {:conf conf
        :inimbus inimbus
        :submitted-count (atom 0)
        :storm-cluster-state (cluster/mk-storm-cluster-state conf)
        :submit-lock (Object.)
        :heartbeats-cache (atom {})
        :downloaders (file-cache-map conf)
        :uploaders (file-cache-map conf)
        :uptime (uptime-computer)
        :validator (new-instance (conf NIMBUS-TOPOLOGY-VALIDATOR))
        :timer (mk-timer :kill-fn (fn [t]
                                    (log-error t "Error when processing event")
                                    (exit-process! 20 "Error when processing an event")
                                    ))
        :scheduler (mk-scheduler conf inimbus)
        }))

    conf保存了storm集群的配置信息,inimbus表示当前nimbus实例,cluster/mk-storm-cluster-state返回一个实现了StormClusterState协议的实例。storm-active?函数定义如下:

    (defn storm-active? [storm-cluster-state storm-name]
     (not-nil? (get-storm-id storm-cluster-state storm-name)))

    通过调用get-storm-id函数获取指定topology名字的topology id,如果id存在则返回true,否则返回false。get-storm-id函数如下:

    (defn get-storm-id [storm-cluster-state storm-name]
     (let [active-storms (.active-storms storm-cluster-state)]
       (find-first
         #(= storm-name (:storm-name (.storm-base storm-cluster-state % nil)))
         active-storms)
       ))

    active-storms函数获取zookeeper中/storms/的所有children,/storms/{topology-id}中存放当前正在运行的topology信息。保存的内容参考common.clj中的类StormBase。

    (defrecord StormBase [storm-name launch-time-secs status num-workers component->executors])

    find-first函数返回名字等于storm-name的第一个topology的id。当我们正确提交topology时,由于zookeeper中的/storms中不存在与之对应的{topology-id}文件,所以check-storm-active!函数的第一个if的条件表达式为(= true true)。进而通过check-storm-active!函数的检查。将topology的配置信息绑定到topo-conf,validate-configs-with-schemas函数验证配置信息的正确性,validate-configs-with-schemas定义如下:

    (defn validate-configs-with-schemas
     [conf]
     (doseq [[k v] conf
             :let [schema (CONFIG-SCHEMA-MAP k)]]
       (if (not (nil? schema))
         (.validateField schema k v))))

    CONFIG-SCHEMA-MAP定义如下:

    ;; Create a mapping of config-string -> validator
    ;; Config fields must have a _SCHEMA field defined
    (def CONFIG-SCHEMA-MAP
     (->> (.getFields Config)
          (filter #(not (re-matches #".*_SCHEMA$" (.getName %))))
          (map (fn [f] [(.get f nil)
                        (get-FieldValidator
                          (-> Config
                              (.getField (str (.getName f) "_SCHEMA"))
                              (.get nil)))]))
          (into {})))

    Config.java中主要有两类静态变量:一类是配置信息,一类是配置信息对应的校验器,校验器属性以_SCHEMA结尾。CONFIG-SCHEMA-MAP中存放了配置信息变量名和对应校验器的键值对config-string -> validator。
    validate-configs-with-schemas函数就是根据配置信息名获取对应校验器,然后对配置信息值进行校验。相关校验器请查看ConfigValidation类的内部类FieldValidator。(:validator nimbus)返回一个实现了backtype.storm.nimbus.ITopologyValidator接口的实例(backtype.storm.nimbus.DefaultTopologyValidators实例)并调用其validate方法。backtype.storm.nimbus.DefaultTopologyValidators类如下:

    public class DefaultTopologyValidator implements ITopologyValidator {
       @Override
       public void prepare(Map StormConf){
       }
       @Override
       public void validate(String topologyName, Map topologyConf, StormTopology topology) throws InvalidTopologyException {        
       }    
    }

    默认情况下validate方法是一个空实现。
    swap!函数用于将atom(原子类型,与java中的原子类型相同)类型的(:submitted-count nimbus)加1,保存已提交topology的个数。storm-id绑定了topology的id。storm-conf绑定topology配置信息和集群配置信息合并后序列化器、需要序列化的类、acker的个数和最大任务并行度配置信息。total-storm-conf绑定全部配置信息。normalize-topology函数主要功能就是为topology添加"topology.tasks"(task总数)配置信息。

    normalize-topology定义如下:

    (defn normalize-topology [storm-conf ^StormTopology topology]
     (let [ret (.deepCopy topology)]
       (doseq [[_ component] (all-components ret)]
         (.set_json_conf
           (.get_common component)
           (->> {TOPOLOGY-TASKS (component-parallelism storm-conf component)}
                (merge (component-conf component))
                to-json )))
       ret ))

    ret绑定一个topology的深度复制,all-components函数返回该topology的所有组件的id和spout/bolt对象的键值对,然后通过调用get_common方法获取spot/bolt对象的ComponentCommon属性,->>是clojure中的一个宏,作用就是将{......}作为merge函数的最后一个参数,然后将merge函数的返回值作为to-json函数的最后一个参数,component-parallelism函数定义如下:

    (defn- component-parallelism [storm-conf component]
     (let [storm-conf (merge storm-conf (component-conf component))
           num-tasks (or (storm-conf TOPOLOGY-TASKS) (num-start-executors component))
           max-parallelism (storm-conf TOPOLOGY-MAX-TASK-PARALLELISM)
           ]
       (if max-parallelism
         (min max-parallelism num-tasks)
         num-tasks)))

    component-parallelism是个私有函数,主要功能就是确定"topology.tasks"的值,num-start-executors函数获取spout/bolt的并行度,没有设置并行度时默认值为1,num-tasks绑定该topology的任务数,max-parallelism绑定最大任务数,最后num-tasks和max-parallelism中较小的。normalize-topology函数会将添加了"topology.tasks"的配置信息保存到spout/bolt的ComponentCommon属性的json_conf中,并返回修改后的topology。
    system-topology!函数定义如下:

    (defn system-topology! [storm-conf ^StormTopology topology]
     (validate-basic! topology)
     (let [ret (.deepCopy topology)]
       (add-acker! storm-conf ret)
       (add-metric-components! storm-conf ret)    
       (add-system-components! storm-conf ret)
       (add-metric-streams! ret)
       (add-system-streams! ret)
       (validate-structure! ret)
       ret
       ))

    validate-basic!验证topology的基本信息,add-acker!添加acker bolt,add-acker!函数定义如下:

    (defn add-acker! [storm-conf ^StormTopology ret]
     (let [num-executors (if (nil? (storm-conf TOPOLOGY-ACKER-EXECUTORS)) (storm-conf TOPOLOGY-WORKERS) (storm-conf TOPOLOGY-ACKER-EXECUTORS))
           acker-bolt (thrift/mk-bolt-spec* (acker-inputs ret)
                                            (new backtype.storm.daemon.acker)
                                            {ACKER-ACK-STREAM-ID (thrift/direct-output-fields ["id"])
                                             ACKER-FAIL-STREAM-ID (thrift/direct-output-fields ["id"])
                                             }
                                            :p num-executors
                                            :conf {TOPOLOGY-TASKS num-executors
                                                   TOPOLOGY-TICK-TUPLE-FREQ-SECS (storm-conf TOPOLOGY-MESSAGE-TIMEOUT-SECS)})]
       (dofor [[_ bolt] (.get_bolts ret)
               :let [common (.get_common bolt)]]
              (do
                (.put_to_streams common ACKER-ACK-STREAM-ID (thrift/output-fields ["id" "ack-val"]))
                (.put_to_streams common ACKER-FAIL-STREAM-ID (thrift/output-fields ["id"]))
                ))
       (dofor [[_ spout] (.get_spouts ret)
               :let [common (.get_common spout)
                     spout-conf (merge
                                  (component-conf spout)
                                  {TOPOLOGY-TICK-TUPLE-FREQ-SECS (storm-conf TOPOLOGY-MESSAGE-TIMEOUT-SECS)})]]
         (do
           ;; this set up tick tuples to cause timeouts to be triggered
           (.set_json_conf common (to-json spout-conf))
           (.put_to_streams common ACKER-INIT-STREAM-ID (thrift/output-fields ["id" "init-val" "spout-task"]))
           (.put_to_inputs common
                           (GlobalStreamId. ACKER-COMPONENT-ID ACKER-ACK-STREAM-ID)
                           (thrift/mk-direct-grouping))
           (.put_to_inputs common
                           (GlobalStreamId. ACKER-COMPONENT-ID ACKER-FAIL-STREAM-ID)
                           (thrift/mk-direct-grouping))
           ))
       (.put_to_bolts ret "__acker" acker-bolt)
       ))

    根据是否配置"topology.acker.executors"获取acker线程的个数,如果没有配置num-executors绑定"topology.workers"的值,否则绑定"topology.acker.executors"的值。acker-bolt绑定生成的acker bolt对象。acker-inputs函数定义如下:

    (defn acker-inputs [^StormTopology topology]
     (let [bolt-ids (.. topology get_bolts keySet)
           spout-ids (.. topology get_spouts keySet)
           spout-inputs (apply merge
                               (for [id spout-ids]
                                 {[id ACKER-INIT-STREAM-ID] ["id"]}
                                 ))
           bolt-inputs (apply merge
                              (for [id bolt-ids]
                                {[id ACKER-ACK-STREAM-ID] ["id"]
                                 [id ACKER-FAIL-STREAM-ID] ["id"]}
                                ))]
       (merge spout-inputs bolt-inputs)))

    bolt-ids绑定topology所有bolt的id,spout-ids绑定所有spout的id,spout-inputs绑定来自spout的输入流,bolt-inputs绑定来自bolt的输入流,最后返回合并后的输入流(一个map对象)。ACKER-ACK-STREAM-ID和ACKER-FAIL-STREAM-ID表示acker的输出流。TOPOLOGY-TICK-TUPLE-FREQ-SECS表示tick tuple的频率,初始值为消息超时的时间。第一个dofor语句为每个bolt添加ACKER-ACK-STREAM-ID和ACKER-FAIL-STREAM-ID输出流用于将ack value发送个acker bolt,第二个dofor为每个spout设置了tick tuple的发送频率,并且设置了发送给acker bolt的ACKER-INIT-STREAM-ID输出流和来自ackerblot的两个输入流。这样acker bolt就可以与spout和bolt进行ack信息通信了。add-metric-components!函数主要功能就是将metric bolts添加到topology定义中。metric bolt主要用于统计线程executor相关的信息。add-metric-components!函数定义如下:

    (defn add-metric-components! [storm-conf ^StormTopology topology]  
     (doseq [[comp-id bolt-spec] (metrics-consumer-bolt-specs storm-conf topology)]
       (.put_to_bolts topology comp-id bolt-spec)))
    metrics-consumer-bolt-specs函数定义如下:
    (defn metrics-consumer-bolt-specs [storm-conf topology]
     (let [component-ids-that-emit-metrics (cons SYSTEM-COMPONENT-ID (keys (all-components topology)))
           inputs (->> (for [comp-id component-ids-that-emit-metrics]
                         {[comp-id METRICS-STREAM-ID] :shuffle})
                       (into {}))
           
           mk-bolt-spec (fn [class arg p]
                          (thrift/mk-bolt-spec*
                           inputs
                           (backtype.storm.metric.MetricsConsumerBolt. class arg)
                           {} :p p :conf {TOPOLOGY-TASKS p}))]
       
       (map
        (fn [component-id register]          
          [component-id (mk-bolt-spec (get register "class")
                                      (get register "argument")
                                      (or (get register "parallelism.hint") 1))])
       
        (metrics-consumer-register-ids storm-conf)
        (get storm-conf TOPOLOGY-METRICS-CONSUMER-REGISTER))))

    component-ids-that-emit-metrics绑定包括system bolt在内的所有spout和bolt的id,inputs绑定了metric bolt的输入流,并且使用shuffle grouping。mk-bolt-spec绑定一个匿名函数,metrics-consumer-register-ids函数为每个metric consumer对象产生一个component id列表,get函数返回所有metric consumer对象,map函数返回component id和metric consumer对象集合的列表([component-id metric-consumer] [component-id metric-consumer]......)。add-system-components!函数主要功能是将system bolt添加到topology定义中。system bolt用于统计与进程worker相关的信息,如内存使用率,gc情况,网络吞吐量等。每个进程worker中只有一个system bolt。add-system-components!函数定义如下:

    (defn add-system-components! [conf ^StormTopology topology]
     (let [system-bolt-spec (thrift/mk-bolt-spec*
                             {}
                             (SystemBolt.)
                             {SYSTEM-TICK-STREAM-ID (thrift/output-fields ["rate_secs"])
                              METRICS-TICK-STREAM-ID (thrift/output-fields ["interval"])}                          
                             :p 0
                             :conf {TOPOLOGY-TASKS 0})]
       (.put_to_bolts topology SYSTEM-COMPONENT-ID system-bolt-spec)))

    从thrift/mk-bolt-spec*函数的第一个参数{}我们可以发现system bolt没有输入流,从第三个参数可以发现它有两个输出流用于发送tick tuple,它的并行度为0,因为system bolt是与进程worker相关的,所以没有必要指定并行度。同时他也不需要执行任何task。add-metric-streams!函数主要功能用于给topology添加metric streams定义,add-metric-streams!定义如下:

    (defn add-metric-streams! [^StormTopology topology]
     (doseq [[_ component] (all-components topology)
             :let [common (.get_common component)]]
       (.put_to_streams common METRICS-STREAM-ID
                        (thrift/output-fields ["task-info" "data-points"]))))

    给spout和bolt添加METRICS-STREAM-ID标示的metric stream。add-system-streams!函数与add-metric-streams!相似,给spout和bolt添加SYSTEM-STREAM-ID标示的system stream。submitTopologyWithOpts函数在调用system-topology!函数后,首先加锁,然后调用setup-storm-code函数,该函数的主要功能就是将上传给nimbus的jar包、topology和配置信息拷贝到{storm.local.dir}/nimbus/stormdist/{topology id}目录中,定义如下:

    (defn- setup-storm-code [conf storm-id tmp-jar-location storm-conf topology]
     (let [stormroot (master-stormdist-root conf storm-id)]
      (FileUtils/forceMkdir (File. stormroot))
      (FileUtils/cleanDirectory (File. stormroot))
      (setup-jar conf tmp-jar-location stormroot)
      (FileUtils/writeByteArrayToFile (File. (master-stormcode-path stormroot)) (Utils/serialize topology))
      (FileUtils/writeByteArrayToFile (File. (master-stormconf-path stormroot)) (Utils/serialize storm-conf))
      ))

    setup-jar函数将{storm.local.dir}/nimbus/inbox/中的jar包拷贝到{storm.local.dir}/nimbus/stormdist/{topology id}目录,并重命名为stormjar.jar。FileUtils/writeByteArrayToFile将topology对象和storm-conf序列化后分别保存到stormcode.ser和stormconf.ser。setup-heartbeats!函数定义在cluster.clj文件中,是StormClusterState协议的一个函数,主要功能就是在zookeeper上创建该topology用于存放心跳信息的目录。心跳目录:
    /storm/workerbeats/{topology id}/。
    start-storm函数的主要功能读取整个集群的配置信息、nimbus的配置信息、从stormconf.ser反序列化topology配置信息和从stormcode.ser反序列化出topology,然后通过调用activate-storm!函数将topology的元数据StormBase对象写入zookeeper的/storm/storms/{topology id}文件中。定义如下:

    (defn- start-storm [nimbus storm-name storm-id topology-initial-status]
     {:pre [(#{:active :inactive} topology-initial-status)]}                
     (let [storm-cluster-state (:storm-cluster-state nimbus)
           conf (:conf nimbus)
           storm-conf (read-storm-conf conf storm-id)
           topology (system-topology! storm-conf (read-storm-topology conf storm-id))
           num-executors (->> (all-components topology) (map-val num-start-executors))]
       (log-message "Activating " storm-name ": " storm-id)
       (.activate-storm! storm-cluster-state
                         storm-id
                         (StormBase. storm-name
                                     (current-time-secs)
                                     {:type topology-initial-status}
                                     (storm-conf TOPOLOGY-WORKERS)
                                     num-executors))))

    submitTopologyWithOpts函数最后调用mk-assignments函数进行任务分配。任务分配是stom架构的重要组成部分。鉴于篇幅问题,有关任务分配的源码分析会在之后的文章中讲解。

  • 相关阅读:
    生成数据库结构设计说明书的存储过程
    C#检测上传图片是否安全函数
    设定下拉列表控件DropDownList,复选按钮CheckBox,RadioButton默认值总结测试
    C#批量重命名工具V2.0
    个人一些工作经验方式积累办法
    修身《孟子》尽心篇
    linux 命令 lspci lsusb
    重拾信心
    linux eclipse
    A lunch in Gordon Market with WWF
  • 原文地址:https://www.cnblogs.com/ierbar0604/p/4378397.html
Copyright © 2020-2023  润新知