• 将单链表排序的两种方法


    对单链表排序,通常有两种方法。(PS:考察一个程序员的C语言编程功底,通常看他是否能娴熟地操作链表就知道了。当然,实际C编程中我们并不需要去重新实现链表,无论是Linux还是Solaris, 都有双向循环链表的标准实现。

    • 方法1:将每一个结点的内存地址保存到额外的数组中(也就是将链式存储转化为顺序存储),对数组进行排序,然后根据有序的数组重新构建链表。
    • 方法2:直接对链表进行插入排序,但是实现起来比较复杂一些。

    显然,方法1最为简单,因为将链式存储L先转化为顺序存储a[],对顺序存储a[]排序,就避免了较为复杂的链接指针操作。一旦对顺序存储a[]排好序后,根据a[]重新构建一个链表易如反掌。例如:设单链表list有3个结点,结点的内存地址分别为{0x977e018, 0x977e028, 0x977e038}, 结点的数据域分别为{2, 3, 1}, 于是,可用图模拟方法1之排序过程如下:

    1. 单链表的定义

    typedef struct list_s {
            int data;
            struct list_s *next;
    } list_t;

    2. 方法1(对aux[]排序使用的算法是简单插入排序

     1 /*
     2  * Insert a[n] before a[m]
     3  *                                                .-----------.
     4  *                                                |           |
     5  * o Input : a[m-1], a[m], a[m+1], ..., a[n-1], a[n], a[n+1]  |
     6  *                                                         |
     7  * o Output: a[m-1], a[n], a[m], a[m+1], ..., a[n-1], a[n+1]  |
     8  *                       \____________________________________/
     9  */
    10 static void
    11 insert(list_t *a[], int m, int n)
    12 {
    13         list_t *t = a[n];
    14         for (int i = n; i > m; i--)
    15                 a[i] = a[i-1];
    16         a[m] = t;
    17 }
    18 
    19 /*
    20  * Straight Insertion Sort (sisort in short)
    21  *
    22  * NOTES:
    23  *      1. a[i .. n-1] is not sorted and
    24  *         a[0 .. i-1] is sorted
    25  *      2. walk a[0 .. i-1], if a[i] < a[j], insert a[i] before a[j]
    26  */
    27 static void
    28 sisort(list_t *a[], size_t n)
    29 {
    30         for (int i = 1; i < n; i++) {
    31                 for (int j = 0; j < i; j++) {
    32                         if (a[i]->data < a[j]->data) {
    33                                 insert(a, j, i);
    34                                 break;
    35                         }
    36                 }
    37         }
    38 }
    39 
    40 static void
    41 list_sort(list_t **head)
    42 {
    43         if (head == NULL || *head == NULL)
    44                 return;
    45 
    46         /* get total number of nodes in the single linked list */
    47         int len = 0;
    48         for (list_t *p = *head; p != NULL; p = p->next)
    49                 len++;
    50 
    51         /* malloc aux[] */
    52         list_t **aux = (list_t **)malloc(sizeof (list_t *) * len);
    53         if (aux == NULL) /* error */
    54                 return;
    55 
    56         /* save addr of per node to aux[] */
    57         int k = 0;
    58         for (list_t *p = *head; p != NULL; p = p->next)
    59                 aux[k++] = p;
    60 
    61         /* sort aux[] via straight insertion sorting algorithm */
    62         sisort(aux, len);
    63 
    64         /* rebuild the single linked list by walking aux[] */
    65         *head = aux[0];
    66         for (int i = 0; i < len - 1; i++)
    67                 aux[i]->next = aux[i+1];
    68         aux[len-1]->next = NULL;
    69 
    70         free(aux);
    71 }

    3. 方法2

    实现链式插入排序的关键有两点:

    1. 在遍历单链表的过程中,从单链表上把某个结点p摘下来存入q,把q插入到已经有序的链表上,然后将p指针向后移(p = p->next); (注意: 要将q断开(q->next = NULL), 必须先执行p = p->next)
    2. 遍历已经有序的链表,计算出待插入结点p的前驱和后继指针。 (PS: 下面的两个函数大约花了我1个半小时的时间,嘿费脑壳Orz)
     1 static void
     2 list_insert(list_t **head, list_t *node)
     3 {
     4         if (*head == NULL) {
     5                 *head = node;
     6                 return;
     7         }
     8 
     9         /* get both prev and next of the node to insert */
    10         list_t *node_prev = *head;
    11         list_t *node_next = NULL;
    12         for (list_t *p = *head; p != NULL; p = p->next) {
    13                 if (p->data < node->data) {
    14                         node_prev = p;
    15                         continue;
    16                 }
    17 
    18                 node_next = p;
    19                 break;
    20         }
    21 
    22         if (node_next == NULL) { /* append node to the tail */
    23                 node_prev->next = node;
    24         } else {
    25                 if (node_next == node_prev) { /* == *head */
    26                         node->next = *head;
    27                         *head = node;
    28                         return;
    29                 }
    30 
    31                 /* node_prev -> node -> node_next */
    32                 node_prev->next = node;
    33                 node->next = node_next;
    34         }
    35 }
    36 
    37 static void
    38 list_sort(list_t **head)
    39 {
    40         if (*head == NULL)
    41                 return;
    42 
    43         list_t *headp = *head; /* copy *head to headp before snip headp->next */
    44         list_t *p = headp->next; /* init p (move forward) before cut-off */
    45         headp->next = NULL;      /* now cut off headp->next */
    46 
    47         while (p != NULL) {
    48                 list_t *this = p;  /* copy p to this before snip this->next */
    49                 p = p->next;       /* move p forward before cut-off */
    50                 this->next = NULL; /* now cut off this->next */
    51                 list_insert(&headp, this); /* insert this node to list headp */
    52         }
    53 
    54         *head = headp; /* always save headp back even if headp == *head */
    55 }

    4. 完整的C代码实现(戳这里

    o sort.c

      1 /*
      2  * Single Linked List Sorting
      3  *
      4  *      1. convert a[] to a single linked list L
      5  *         e.g. int a[] = {9, 8, 7, 7}
      6  *         ==>        L = 9->8->7->7->NULL
      7  *      2. sort list L via straight insertion sorting
      8  *         ==>        L = 7->7->8->9->NULL
      9  *      3. convert list L back to a[]
     10  *         ==>      a[] = {7, 7, 8, 9}
     11  *
     12  * Note there are two solutions,
     13  *      (a) Use aux[] to save addr of per node in list L, then sort aux[] via
     14  *          straight insertion sorting algorithm, and rebuild list L by walking
     15  *          sorted aux[]
     16  *      (b) Don't use aux[] but directly sort the single liked list L
     17  *
     18  *      To implement the two solutions above, (a) is very easy and (b) is a bit
     19  *      difficult. Please also keep in mind that performance of (b) is good.
     20  */
     21 
     22 #include <stdio.h>
     23 #include <stdlib.h>
     24 #include <string.h>
     25 
     26 typedef enum bool_s {false, true} bool_t;
     27 
     28 bool_t g_isint = true;
     29 
     30 typedef struct list_s {
     31         int data;
     32         struct list_s *next;
     33 } list_t;
     34 
     35 #ifdef _USE_AUX /* solution (a) */
     36 static void
     37 list_init(list_t **head, list_t *node)
     38 {
     39         static list_t *tail = NULL;
     40 
     41         if (*head == NULL) {
     42                 *head = node;
     43                 tail = node;
     44                 return;
     45         }
     46 
     47         tail->next = node;
     48         tail = node;
     49 }
     50 #else
     51 static void
     52 list_init(list_t **head, list_t *node)
     53 {
     54         if (*head == NULL) {
     55                 *head = node;
     56                 return;
     57         }
     58 
     59         list_t *q = *head;
     60         for (list_t *p = *head; p != NULL; p = p->next)
     61                 q = p;
     62         q->next = node;
     63 }
     64 #endif
     65 
     66 static void
     67 list_show(list_t *head)
     68 {
     69         if (head == NULL)
     70                 return;
     71 
     72         for (list_t *p = head; p != NULL; p = p->next)
     73                 printf("%d ", p->data);
     74         printf("
    ");
     75 }
     76 
     77 static void
     78 list_fini(list_t *head)
     79 {
     80         list_t *p = head;
     81         while (p != NULL) {
     82                 list_t *q = p;
     83                 p = p->next;
     84                 free(q);
     85         }
     86 }
     87 
     88 #ifdef _USE_AUX /* solution (a) */
     89 /*
     90  * Insert a[n] before a[m]
     91  *                                                .-----------.
     92  *                                                |           |
     93  * o Input : a[m-1], a[m], a[m+1], ..., a[n-1], a[n], a[n+1]  |
     94  *                                                         |
     95  * o Output: a[m-1], a[n], a[m], a[m+1], ..., a[n-1], a[n+1]  |
     96  *                       \____________________________________/
     97  */
     98 static void
     99 insert(list_t *a[], int m, int n)
    100 {
    101         list_t *t = a[n];
    102         for (int i = n; i > m; i--)
    103                 a[i] = a[i-1];
    104         a[m] = t;
    105 }
    106 
    107 /*
    108  * Straight Insertion Sort (sisort in short)
    109  *
    110  * NOTES:
    111  *      1. a[i .. n-1] is not sorted and
    112  *         a[0 .. i-1] is sorted
    113  *      2. walk a[0 .. i-1], if a[i] < a[j], insert a[i] before a[j]
    114  */
    115 static void
    116 sisort(list_t *a[], size_t n)
    117 {
    118         for (int i = 1; i < n; i++) {
    119                 for (int j = 0; j < i; j++) {
    120                         if (a[i]->data < a[j]->data) {
    121                                 insert(a, j, i);
    122                                 break;
    123                         }
    124                 }
    125         }
    126 }
    127 
    128 static void
    129 list_sort(list_t **head)
    130 {
    131         if (head == NULL || *head == NULL)
    132                 return;
    133 
    134         /* get total number of nodes in the single linked list */
    135         int len = 0;
    136         for (list_t *p = *head; p != NULL; p = p->next)
    137                 len++;
    138 
    139         /* malloc aux[] */
    140         list_t **aux = (list_t **)malloc(sizeof (list_t *) * len);
    141         if (aux == NULL) /* error */
    142                 return;
    143 
    144         /* save addr of per node to aux[] */
    145         int k = 0;
    146         for (list_t *p = *head; p != NULL; p = p->next)
    147                 aux[k++] = p;
    148 
    149         /* sort aux[] via straight insertion sorting algorithm */
    150         sisort(aux, len);
    151 
    152         /* rebuild the single linked list by walking aux[] */
    153         *head = aux[0];
    154         for (int i = 0; i < len - 1; i++)
    155                 aux[i]->next = aux[i+1];
    156         aux[len-1]->next = NULL;
    157 
    158         free(aux);
    159 }
    160 #else
    161 static void
    162 list_insert(list_t **head, list_t *node)
    163 {
    164         if (*head == NULL) {
    165                 *head = node;
    166                 return;
    167         }
    168 
    169         /* get both prev and next of the node to insert */
    170         list_t *node_prev = *head;
    171         list_t *node_next = NULL;
    172         for (list_t *p = *head; p != NULL; p = p->next) {
    173                 if (p->data < node->data) {
    174                         node_prev = p;
    175                         continue;
    176                 }
    177 
    178                 node_next = p;
    179                 break;
    180         }
    181 
    182         if (node_next == NULL) { /* append node to the tail */
    183                 node_prev->next = node;
    184         } else {
    185                 if (node_next == node_prev) { /* == *head */
    186                         node->next = *head;
    187                         *head = node;
    188                         return;
    189                 }
    190 
    191                 /* node_prev -> node -> node_next */
    192                 node_prev->next = node;
    193                 node->next = node_next;
    194         }
    195 }
    196 
    197 static void
    198 list_sort(list_t **head)
    199 {
    200         if (*head == NULL)
    201                 return;
    202 
    203         list_t *headp = *head; /* copy *head to headp before snip headp->next */
    204         list_t *p = headp->next; /* init p (move forward) before cut-off */
    205         headp->next = NULL;      /* now cut off headp->next */
    206 
    207         while (p != NULL) {
    208                 list_t *this = p;  /* copy p to this before snip this->next */
    209                 p = p->next;       /* move p forward before cut-off */
    210                 this->next = NULL; /* now cut off this->next */
    211                 list_insert(&headp, this); /* insert this node to list headp */
    212         }
    213 
    214         *head = headp; /* always save headp back even if headp == *head */
    215 }
    216 #endif
    217 
    218 static void
    219 show(int a[], size_t n)
    220 {
    221         if (g_isint) {
    222                 for (int i = 0; i < n; i++)
    223                         printf("%-2d ", a[i]);
    224         } else {
    225                 for (int i = 0; i < n; i++)
    226                         printf("%-2c ", a[i]);
    227         }
    228         printf("
    ");
    229 }
    230 
    231 static void
    232 a2l_init(list_t **head, int a[], size_t n)
    233 {
    234         for (int i = 0; i < n; i++) {
    235                 list_t *nodep = NULL;
    236                 nodep = (list_t *)malloc(sizeof (list_t));
    237                 if (nodep == NULL) /* error: failed to malloc */
    238                         return;
    239 
    240                 nodep->data = a[i];
    241                 nodep->next = NULL;
    242 
    243                 list_init(head, nodep);
    244 
    245                 printf("Append a[%x]=%d:	", i, nodep->data); list_show(*head);
    246         }
    247 
    248 }
    249 
    250 static void
    251 a2l_fini(list_t *head, int a[], size_t n)
    252 {
    253         if (head == NULL)
    254                 return;
    255 
    256         int k = 0;
    257         for (list_t *p = head; p != NULL; p = p->next) {
    258                 a[k++] = p->data;
    259 
    260                 if (k >= n)
    261                         break;
    262         }
    263 
    264         list_fini(head);
    265 }
    266 
    267 int
    268 main(int argc, char *argv[])
    269 {
    270         if (argc < 2) {
    271                 fprintf(stderr, "Usage: %s <C1> [C2] ...
    ", argv[0]);
    272                 return -1;
    273         }
    274 
    275         argc--;
    276         argv++;
    277 
    278         int n = argc;
    279         int *a = (int *)malloc(sizeof(int) * n);
    280 #define VALIDATE(p) do { if (p == NULL) return -1; } while (0)
    281         VALIDATE(a);
    282 
    283         char *s = getenv("ISINT");
    284         if (s != NULL && strncmp(s, "true", 4) == 0)
    285                 g_isint = true;
    286         else if (s != NULL && strncmp(s, "false", 4) == 0)
    287                 g_isint = false;
    288 
    289         if (g_isint) {
    290                 for (int i = 0; i < n; i++)
    291                         *(a+i) = atoi(argv[i]);
    292         } else {
    293                 for (int i = 0; i < n; i++)
    294                         *(a+i) = argv[i][0];
    295         }
    296 
    297         printf("                ");
    298         for (int i = 0; i < n; i++)
    299                 printf("%-2x ", i);
    300         printf("
    ");
    301 
    302         printf("Before sorting: "); show(a, n);
    303         list_t *head = NULL;
    304         a2l_init(&head, a, n);
    305         list_sort(&head);
    306         a2l_fini(head, a, n);
    307         printf("After  sorting: "); show(a, n);
    308 
    309 #define FREE(p) do { free(p); p = NULL; } while (0)
    310         FREE(a);
    311         return 0;
    312 }

    o 编译并测试

    $ gcc -g -Wall -m32 -std=c99 -D_USE_AUX -o sort sort.c
    $ ./sort 9 8 7 6 5 4 3 2 1 0 10 1
                    0  1  2  3  4  5  6  7  8  9  a  b
    Before sorting: 9  8  7  6  5  4  3  2  1  0  10 1
    Append a[0]=9:  9
    Append a[1]=8:  9 8
    Append a[2]=7:  9 8 7
    Append a[3]=6:  9 8 7 6
    Append a[4]=5:  9 8 7 6 5
    Append a[5]=4:  9 8 7 6 5 4
    Append a[6]=3:  9 8 7 6 5 4 3
    Append a[7]=2:  9 8 7 6 5 4 3 2
    Append a[8]=1:  9 8 7 6 5 4 3 2 1
    Append a[9]=0:  9 8 7 6 5 4 3 2 1 0
    Append a[a]=10: 9 8 7 6 5 4 3 2 1 0 10
    Append a[b]=1:  9 8 7 6 5 4 3 2 1 0 10 1
    After  sorting: 0  1  1  2  3  4  5  6  7  8  9  10
    
    $ gcc -g -Wall -m32 -std=c99 -o sort sort.c
    $ ./sort 9 8 7 6 5 4 3 2 1 0 10 1
                    0  1  2  3  4  5  6  7  8  9  a  b
    Before sorting: 9  8  7  6  5  4  3  2  1  0  10 1
    Append a[0]=9:  9
    Append a[1]=8:  9 8
    Append a[2]=7:  9 8 7
    Append a[3]=6:  9 8 7 6
    Append a[4]=5:  9 8 7 6 5
    Append a[5]=4:  9 8 7 6 5 4
    Append a[6]=3:  9 8 7 6 5 4 3
    Append a[7]=2:  9 8 7 6 5 4 3 2
    Append a[8]=1:  9 8 7 6 5 4 3 2 1
    Append a[9]=0:  9 8 7 6 5 4 3 2 1 0
    Append a[a]=10: 9 8 7 6 5 4 3 2 1 0 10
    Append a[b]=1:  9 8 7 6 5 4 3 2 1 0 10 1
    After  sorting: 0  1  1  2  3  4  5  6  7  8  9  10

    小结: 链式存储排序显然比顺序存储排序节省了较大存储空间,同时时间效率也不错,只是实现起来较为复杂。关于Linux/Solaris中有关通用双向循环链表(本质上是"侵入式"链表)的实现,请参见其源码。

    1. Linux: linux/types.hlinux/list.h
    2. Solaris: list_impl.h, list.h, list.c
  • 相关阅读:
    h5手机端禁止缩放问题
    element upload 一次性上传多张图片(包含自定义上传不走action)
    vue开发移动端项目 过渡动画问题
    vue中使用transition标签底部导航闪烁问题
    vue element upload图片 转换成base64
    vue项目 sockjs-node一直报错问题
    获得省市区 二级 三级 四级 五级联动数据地址
    vue项目中引入第三方框架
    element中使用button会刷新一遍页面
    [Java] 字符流 Writer,输出字符数据PrintWriter
  • 原文地址:https://www.cnblogs.com/idorax/p/6763490.html
Copyright © 2020-2023  润新知