• [转载]MongoDB优化的几点原则


    1.查询优化
    确认你的查询是否充分利用到了索引,用explain命令查看一下查询执行的情况,添加必要的索引,避免扫表操作。
    2.搞清你的热数据大小
    可能你的数据集非常大,但是这并不那么重要,重要的是你的热数据集有多大,你经常访问的数据有多大(包括经常访问的数据和所有索引数据)。使用MongoDB,你最好保证你的热数据在你机器的内存大小之下,保证内存能容纳所有热数据。
    3.选择正确的文件系统
    MongoDB的数据文件是采用的预分配模式,并且在Replication里面,Master和Replica Sets的非Arbiter节点都是会预先创建足够的空文件用以存储操作日志。这些文件分配操作在一些文件系统上可能会非常慢,导致进程被Block。所以我们应该选择那些空间分配快速的文件系统。这里的结论是尽量不要用ext3,用ext4或者xfs。
    4.选择合适的硬盘
    这里的选择包括了对磁盘RAID的选择,也包括了磁盘与SSD的对比选择。
    5.尽量少用in的方式查询,尤其是在shard上,他会让你的查询去被一个shand上跑一次,
    如果逼不得已要用的话再每个shard上建索引。
    优化in的方式是把in分解成一个一个的单一查询。速度会提高40-50倍
    6.合理设计sharding key
    increamenting sharding key(增量sharding-key)适合于可划分范围的字段,比如integer、float、date类型的,查询时比较快
    random sharding key(随机sharding-key)适用于写操作频繁的场景,而这种情况下如果在一个shard上进行会使得这个shard负载比其他高,不够均衡,故而希望能hash查询key,将写分布在多个shard上进行
    考虑复合key作为sharding key, 总的原则是查询快,尽量减少跨shard查询,balance均衡次数少。
    mongodb默认是单条记录16M,尤其在使用GFS的时候,一定要注意shrading-key的设计。
    不合理的sharding-key会出现,多个文档,在一个chunks上,同时,因为GFS中存贮的往往是大文件,导致mongodb在做balance的时候无法通过sharding-key来把这多个文档分开到不同的shard上,
    这时候mongodb会不断报错
    [conn27669] Uncaught std::exception: St9bad_alloc, terminating。最后导致mongodb倒掉。
    解决办法:加大chunks大小(治标),设计合理的sharding-key(治本)。
    7.mongodb可以通过profile来监控数据,进行优化。
    查看当前是否开启profile功能
    用命令db.getProfilingLevel() 返回level等级,值为0|1|2,分别代表意思:0代表关闭,1代表记录慢命令,2代表全部
    开启profile功能命令为
    db.setProfilingLevel(level); #level等级,值同上
    level为1的时候,慢命令默认值为100ms,更改为db.setProfilingLevel(level,slowms)如db.setProfilingLevel(1,50)这样就更改为50毫秒
    通过db.system.profile.find() 查看当前的监控日志。

    原文地址:http://blog.csdn.net/swqqcs/article/details/15505103

  • 相关阅读:
    CentOS安装sctp协议
    视频编码未来简史
    Linux内核:分析coredump文件
    skb的两个函数pskb_copy和skb_copy
    《Linux内核设计与实现》读书笔记(十二)- 内存管理
    Linux内核学习笔记之seq_file接口创建可读写proc文件
    内核如何签名
    《女士品茶》与统计检验
    K近邻算法
    PCA原理分析
  • 原文地址:https://www.cnblogs.com/iack/p/3594256.html
Copyright © 2020-2023  润新知