/**
快速排序OC 实现:
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。
一趟快速排序的算法是:
1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];
3)从j开始向前搜索,即由后开始向前搜索(j--),找到第一个小于key的值A[j],将A[j]和A[i]互换;
4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]互换;
5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。
*/
- (void)quickSortWithData:(int [])data Start:(int)start End:(int)end
{
int temp = data[start];
int i = start;
int j = end;
while (i < j) {
while (i < j && data[j] >= temp) {
j --;
}
if (i < j) {
data[i] = data[j];
}
while (i < j && data[i] <= temp) {
i ++;
}
if (i < j) {
data[j] = data[i];
}
}
data[i] = temp;
[self quickSortWithData:data Start:start End:i];
[self quickSortWithData:data Start:i+1 End:end];
}
思路:快速排序。主要思想是找一个“轴”节点,将数列交换变成两部分,一部分全都小于等于“轴”,另一部分全都大于等于“轴”,然后对两部分 递归处理。其平均时间复杂度是O(NlogN)。从中可以受到启发,如果我们选择的轴使得交换完的“较大”那一部分的数的个数j正好是n,不也就完成了在 N个数中寻找n个最大的数的任务吗?当然,轴也许不能选得这么恰好。可以这么分析,如果j>n,则最大的n个数肯定在这j个数中,则问题变成在这j 个数中找出n个最大的数;否则如果j<n,则这j个数肯定是n个最大的数的一部分,而剩下的j-n个数在小于等于轴的那一部分中,同样可递归处理。
这个算法的平均复杂度是O(N)的。