• A note on trying to extend the intermediate value theorem


    First, it is necessary to introduce the following definitions1,

    • The function is said to be increasing at \(x_{0}\) if for all \(x\)-values in some interval about \(x_{0}\) it is true that when \(x_{0} < x\) then \(y_{0} < y\), and when \(x_{0} > x\) then \(y_{0} > y\).

    • The function is said to be decreasing at \(x_{0}\) if for all \(x\)-val ues in some interval about \(x_{0}\) it is true that when \(x_{0} < x\) then \(y_{0} > y\), and when \(x_{0} > x\) then \(y_{0} < y\).

    Then the definition of “a function is non-decreasing at \(x_{0}\)” is introduced by extend the definition of increasing above.

    • The function is said to be non-decreasing at \(x_{0}\) if for all \(x\)-values in some interval about \(x_{0}\) it is true that when \(x_{0} < x\) then \(y_{0} \leq y\), and when \(x_{0} > x\) then \(y_{0} \geq y\).

    The intermediate value theorem states:

    If \(f\) is a continuous function on a closed interval \(\lbrack a,b\rbrack\), and if \(y_{0}\) is any value strictly between \(f(a)\) and \(f(b)\), that is \(min\{ f(a),f(b)\} < y_{0} < max\{ f(a),f(b)\}\), then \(y_{0} = f(c)\) for some \(c\) in \((a,b)\).

    My original conjecture was to extend it to:

    If \(f\) is a continuous function on a closed interval \(\lbrack a,b\rbrack\) with \(f(a) < f(b)\), and if \(y_{0}\) is any value strictly between \(f(a)\) and \(f(b)\), that is \(f(a) < y_{0} < f(b)\), then \(y_{0} = f(c)\) for some \(c\) in \((a,b)\) and \(\mathbf{f}\) is non-decreasing at the \(\mathbf{c}\).

    But it was said that the Weierstrass function, as a counterexample, is indeed nowhere monotonic, while I still couldn’t understand that. After reading the following proof for the intermediate value theorem2,

    文本, 信件 描述已自动生成

    I realized I could save the conjecture to:

    If \(f\) is a continuous function on a closed interval \(\lbrack a,b\rbrack\) with \(f(a) < f(b)\), and if \(y_{0}\) is any value strictly between \(f(a)\) and \(f(b)\), that is \(f(a) < y_{0} < f(b)\), then there is a \(c = sup(\{ x \mid f(x) < y_{0}\) in \((a,b)\}\)) in \((a,b)\ \)cause \(y_{0} = f(c)\), and such that

    • in every left neighborhood of \(c\), there is always a \(x'\) such that \(f(x') < y_{0}\).

    • for each \(x\) in any right neighborhood of \(c,\ y_{0} \leq f(x)\).

    A similar argument could be drawn for \(f(a) > f(b)\).

    The following two functions, which are both differentiable and continuous in neighborhoods around 0, are helpful for my consideration about the question.

    \[ f(x)=\left\{\begin{aligned} x^{2} \sin \frac{1}{x}, & \text { if } x<0 \\ x^{2}, & \text { if } x \geq 0 \end{aligned}\right. \]

    Plot[Evaluate[Piecewise[{{x^2 Sin[1/x], -0.5 < x < 0}, {x^2, 0 <= x < 0.5}}]], {x, -0.5, 0.5}]

    \[ f(x)=\left\{\begin{aligned} -x^{2}, & \text { if } x \leq 0 \\ x^{2} \sin \frac{1}{x}, & \text { if } x>0 \end{aligned}\right. \]

    Plot[Evaluate[Piecewise[{{-x^2, -0.5 < x <= 0}, {x^2 Sin[1/x], 0 < x < 0.5}}]], {x, -0.5, 0.5}]


    1. Calculus: An Intuitive and Physical Approach, Second Edition, Morris Kline, Chapter 8,Section 3↩︎

    2. Introduction to Calculus and Analysis Volume I, Reprint of the 1989 edition, Richard Courant, Fritz John, p101↩︎

  • 相关阅读:
    【探路者】团队Alpha周贡献分数分配结果
    2017秋-软件工程第七次作业-第八周例行总结
    2017秋-软件工程第七次作业(2)-【探路者】Alpha周(2017年10月19)贡献分配规则和分配结果
    2017秋-软件工程第七次作业(1)-【探路者】贪吃蛇阿尔法发布展示(视频展示)
    2017秋-软件工程第七次作业(1)-【探路者】贪吃蛇阿尔法发布
    名词1
    Jsp1
    代码,python1
    关于键盘
    代码,java_web
  • 原文地址:https://www.cnblogs.com/iMath/p/15879603.html
Copyright © 2020-2023  润新知