(总感觉上一篇的实现有问题)http://www.cnblogs.com/i80386/p/3444726.html combiner是把同一个机器上的多个map的结果先聚合一次
现重新实现一个:
思路:
第一个mapreduce仅仅做 <word_docid,count>的统计,即某个单词在某一篇文章里出现的次数。(原理跟wordcount一样,只是word变成了word_docid)
第二个mapreduce将word_docid在map阶段拆开,重新组合为<word,docid_count> 然后在combine和reduce阶段(combine和reduce是同一个函数)组合为 <word,doc1:count1,doc2:count2,doc3:count3>这种格式import java.io.IOException;
1 思路:
0.txt MapReduce is simple
1.txt MapReduce is powerfull is simple
2.txt Hello MapReduce bye MapReduce
采用两个JOB的形式实现
一:第一个JOB(跟wordcount一致,只是wordcount中的word换做了word:dicid)
1 map函数:context.write(word:docid, 1) 即将word:docid作为map函数的输出
输出key 输出value
MapReduce:0.txt 1
is:0.txt 1
simple:0.txt 1
Mapreduce:1.txt 1
is:1.txt 1
powerfull:1.txt 1
is:1.txt 1
simple:1.txt 1
Hello:2.txt 1
MapReduce:2.txt 1
bye:2.txt 1
MapReduce:2.txt 1
2 Partitioner函数:HashPartitioner
略,根据map函数的输出key(word:docid)进行分区
3 reduce函数:累加输入values
输出key 输出value
MapReduce:0.txt 1 => MapReduce 0.txt:1
is:0.txt 1 => is 0.txt:1
simple:0.txt 1 => simple 0.txt:1
Mapreduce:1.txt 1 => Mapreduce 1.txt:1
is:1.txt 2 => is 1.txt:2
powerfull:1.txt 1 => powerfull 1.txt:1
simple:1.txt 1 => simple 1.txt:1
Hello:2.txt 1 => Hello 2.txt:1
MapReduce:2.txt 2 => MapReduce 2.txt:2
bye:2.txt 1 => bye 2.txt:1
二:第二个JOB
1 map函数:
输入key 输入value 输出key 输出value
MapReduce:0.txt 1 => MapReduce 0.txt:1
is:0.txt 1 => is 0.txt:1
simple:0.txt 1 => simple 0.txt:1
Mapreduce:1.txt 1 => Mapreduce 1.txt:1
is:1.txt 2 => is 1.txt:2
powerfull:1.txt 1 => powerfull 1.txt:1
simple:1.txt 1 => simple 1.txt:1
Hello:2.txt 1 => Hello 2.txt:1
MapReduce:2.txt 2 => MapReduce 2
2 reduce函数 (组合values)
输出key 输出value
MapReduce 0.txt:1,1.txt:1 2.txt:2
is 0.txt:1,is 1.txt:2
simple 0.txt:1,1.txt:1
powerfull 1.txt:1
Hello 2.txt:1
bye 2.txt:1
import java.util.Random;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.mapreduce.lib.reduce.IntSumReducer;
public class MyInvertIndex {
public static class SplitMapper extends
Mapper<Object, Text, Text, IntWritable> {
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
FileSplit split = (FileSplit) context.getInputSplit();
//String pth = split.getPath().toString();
String name = split.getPath().getName();
String[] tokens = value.toString().split("\s");
for (String token : tokens) {
context.write(new Text(token + ":" + name), new IntWritable(1));
}
}
}
public static class CombineMapper extends
Mapper<Text, IntWritable, Text, Text> {
public void map(Text key, IntWritable value, Context context)
throws IOException, InterruptedException {
int splitIndex = key.toString().indexOf(":");
context.write(new Text(key.toString().substring(0, splitIndex)),
new Text(key.toString().substring(splitIndex + 1) + ":"
+ value.toString()));
}
}
public static class CombineReducer extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuffer buff = new StringBuffer();
for (Text val : values) {
buff.append(val.toString() + ",");
}
context.write(key, new Text(buff.toString()));
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
String dir_in = "hdfs://localhost:9000/in_invertedindex";
String dir_out = "hdfs://localhost:9000/out_invertedindex";
Path in = new Path(dir_in);
Path out = new Path(dir_out);
Path path_tmp = new Path("word_docid"
+ Integer.toString(new Random().nextInt(Integer.MAX_VALUE)));
Configuration conf = new Configuration();
try {
Job countJob = new Job(conf, "invertedindex_count");
countJob.setJarByClass(MyInvertIndex.class);
countJob.setInputFormatClass(TextInputFormat.class);
countJob.setMapperClass(SplitMapper.class);
countJob.setCombinerClass(IntSumReducer.class);
countJob.setPartitionerClass(HashPartitioner.class);
countJob.setMapOutputKeyClass(Text.class);
countJob.setMapOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(countJob, in);
countJob.setReducerClass(IntSumReducer.class);
// countJob.setNumReduceTasks(1);
countJob.setOutputKeyClass(Text.class);
countJob.setOutputValueClass(IntWritable.class);
countJob.setOutputFormatClass(SequenceFileOutputFormat.class);
FileOutputFormat.setOutputPath(countJob, path_tmp);
countJob.waitForCompletion(true);
Job combineJob = new Job(conf, "invertedindex_combine");
combineJob.setJarByClass(MyInvertIndex.class);
combineJob.setInputFormatClass(SequenceFileInputFormat.class);
combineJob.setMapperClass(CombineMapper.class);
combineJob.setCombinerClass(CombineReducer.class);
combineJob.setPartitionerClass(HashPartitioner.class);
combineJob.setMapOutputKeyClass(Text.class);
combineJob.setMapOutputValueClass(Text.class);
FileInputFormat.addInputPath(combineJob, path_tmp);
combineJob.setReducerClass(CombineReducer.class);
// combineJob.setNumReduceTasks(1);
combineJob.setOutputKeyClass(Text.class);
combineJob.setOutputValueClass(Text.class);
combineJob.setOutputFormatClass(TextOutputFormat.class);
FileOutputFormat.setOutputPath(combineJob, out);
combineJob.waitForCompletion(true);
} finally {
FileSystem.get(conf).delete(path_tmp, true);
}
}
}
运行结果:
Hello 2.txt:1,,
MapReduce 2.txt:2,1.txt:1,0.txt:1,,
bye 2.txt:1,,
is 1.txt:2,0.txt:1,,
powerfull 1.txt:1,,
simple 1.txt:1,0.txt:1,,