• copyonwrite(写时拷贝)


    写时拷贝(copy-on-write, COW)

      就是等到修改数据时才真正分配内存空间,这是对程序性能的优化,可以延迟甚至是避免内存拷贝,当然目的就是避免不必要的内存拷贝。其实我们对写时拷贝并不陌生,Linux fork和STL string是比较典型的写时拷贝应用

    Linux fork

      传统的fork()系统调用直接把所有的资源复制给新创建的进程。这种实现过于简单并且效率低下,因为它拷贝的数据或许可以共享,Linux的fork()使用写时拷贝(copy-on-write)页实现。写时拷贝是一种可以推迟甚至避免拷贝数据的技术。内核此时并不复制整个进程的地址空间,而是让父子进程共享同一个地址空间。只用在需要写入的时候才会复制地址空间,从而使各个进行拥有各自的地址空间。也就是说,资源的复制是在需要写入的时候才会进行,在此之前,只有以只读方式共享。这种技术使地址空间上的页的拷贝被推迟到实际发生写入的时候。
      在Linux程序中,fork()会产生一个和父进程完全相同的子进程,但子进程在此后多会exec系统调用,出于效率考虑,linux中引入了“写时复制“技术,也就是只有进程空间的各段的内容要发生变化时,才会将父进程的内容复制一份给子进程。那么子进程的物理空间没有代码,怎么去取指令执行exec系统调用呢?
          在fork之后exec之前两个进程用的是相同的物理空间(内存区),子进程的代码段、数据段、堆栈都是指向父进程的物理空间,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。当父子进程中有更改相应段的行为发生时,再为子进程相应的段分配物理空间,如果不是因为exec,内核会给子进程的数据段、堆栈段分配相应的物理空间(至此两者有各自的进程空间,互不影响),而代码段继续共享父进程的物理空间(两者的代码完全相同)。而如果是因为exec,由于两者执行的代码不同,子进程的代码段也会分配单独的物理空间。fork之后内核会通过将子进程放在队列的前面,以让子进程先执行,以免父进程执行导致写时复制,而后子进程执行exec系统调用,因无意义的复制而造成效率的下降。
      fork的另一个特性是所有由父进程打开的描述符都被复制到子进程中。父、子进程中相同编号的文件描述符在内核中指向同一个file结构体,也就是说,file结构体的引用计数要增加。
      fork函数用于创建子进程,典型的调用一次,返回两次的函数,其中返回子进程的PID和0,其中调用进程返回了子进程的PID,而子进程则返回了0,这是一个比较有意思的函数,但是两个进程的执行顺序是不定的。fork()函数调用完成以后父进程的虚拟存储空间被拷贝给了子进程的虚拟存储空间,因此也就实现了共享文件等操作。但是虚拟的存储空间映射到物理存储空间的过程中采用了写时拷贝技术(具体的操作大小是按着页控制的),该技术主要是将多进程中同样的对象(数据)在物理存储其中只有一个物理存储空间,而当其中的某一个进程试图对该区域进行写操作时,内核就会在物理存储器中开辟一个新的物理页面,将需要写的区域内容复制到新的物理页面中,然后对新的物理页面进行写操作。这时就是实现了对不同进程的操作而不会产生影响其他的进程,同时也节省了很多的物理存储器

    STL String

      string类的实现必然有个char*成员变量,用以存放string的内容,写时拷贝针对的对象就是这个char*成员变量。通过赋值或拷贝构造类操作,不管派生多少份string“副本”,每个“副本”的char*成员都是指向相同的地址,也就是共享同一块内存,直到某个“副本”执行string写操作时,才会触发写时拷贝,拷贝一份新的内存空间出来,然后在新空间上执行写操作。显然,那些只读的“副本”节省了内存分配的时间和空间。

      听起来有点懵,对于没了解过写时拷贝的同学,会感觉完全颠覆平常对string的认知,下面我们来看一下实际例子。

    写时拷贝例子

    如上代码所示,调用拷贝构造函数生成str2,调用赋值操作符生成str3,那么str2与str3是否有分配内存空间来存储内容“abc”呢?

      运行结果告诉我们,str1、str2与str3是共享内存空间的(char*成员指向相同的地址)。那么问题来了,对str1、str2或str3内容的修改是否会互相影响呢?答案是,只要遵守STL的约定来修改,是会触发写时拷贝的,不会互相影响(毕竟平时一直这样用也没有问题)。

     

    可以看到,对str1重新复制,修改str3的值,都会触发写时拷贝,分配了新的空间。由于str1、str3都分配了新的空间,str2就可以继续使用原来的空间了。

    写时拷贝原理

      看了上面的例子,相信大家都已明白写时拷贝的表象了。但我们不能满足于现象,还要知道实现原理。应该很多同学都能猜到,string肯定是使用计数器来记录引用数,当有新的string对象共享内存块时,计数器+1,当有对象触发写时拷贝或析构时,计数器-1。

      那么计数器存放在哪里呢?这是对象级别的计数器,由若干个对象共享,string类成员变量、静态变量或全局变量都不能满足要求。最合适的就是在堆里分配空间专门存储这个计数器,由第一个创建的对象分配并初始化计数器,其他对象按照约定引用计数器。我们知道string的内存空间就在堆上,那么直接在这块区上多分配一个空间来存储计数器是最方便的,所有共享这块内存的string对象都能访问计数器。事实上STL就是这么实现的,在string内存空间的最前面分配了空间存储计数器,如下图所示(图片摘自引文):

      string的所有赋值、拷贝构造操作,计数器都会+1;修改string数据时,先判断计数器是否为0(0代表没有其他对象共享内存空间),为0则可以直接使用内存空间(如例子中的str2),否则触发写时拷贝,计数器-1,拷贝一份数据出来修改,并且新的内存计数器置0;string对象析构时,如果计数器为0则释放内存空间,否则计数器也要-1。

  • 相关阅读:
    oracle空表导出的问题
    虚拟机连不上网
    mongodb查询返回内嵌符合条件的文档
    gson转换带有objectId的问题
    java部署项目,ip访问不到,localhost能访问到,浏览器启用了代理的问题
    mongodb replica set(副本集)设置步骤
    a different object with the same identifier value was already associat
    头文件.h的应用以及fortran和c的混合编程
    Matlab符号运算总结
    fortran自由格式每行最多编写132个字符
  • 原文地址:https://www.cnblogs.com/hzzjj/p/16053603.html
Copyright © 2020-2023  润新知