• 2018-2019-1 20189205 《Linux 内核原理与分析》第三周作业


    操作系统是如何工作的

    内核实现

    本周学习内容是实现一个简单的时间片轮转多道程序内核。
    首先需要在Linux虚拟机中再构建一个虚拟的x86CPU硬件平台。这个平台的构建我们利用了部分Linux 3.9.4版本源代码以及网上的内核源代码。
    内核搭建好后其启动效果如下:
    

    而后,我们需要在搭建好的内核的基础上,修改内核的源程序,构建我们所需的程序内核。
    首先我们增加一个mypcb.h头文件,用于定义进程控制块(PCB)的数据结构。我们知道,在操作系统中,每一个进程都依赖于一个PCB,以用于进程调度,来实现进程的并发执行。因此,我们的PCB结构定义如下:
    
    struct Thread {
        unsigned long       ip;        //进程eip
        unsigned long       sp;        //进程esp
    };
    
    typedef struct PCB{
        int pid;                                //进程id
        volatile long state;                    //进程状态
        char stack[KERNEL_STACK_SIZE];          //进程堆栈
        struct Thread thread;                   //
        unsigned long   task_entry;             //进程的起始入口地址
        struct PCB *next;                       //指向下一个进程
    }tPCB;
    
    void my_schedule(void);                     //进行进程调度
    
    然后,我们修改一下mymain.c文件,此文件为内核的入口,用于内核各组件的初始化。我们通过这段程序来启动内核的0号进程,其代码如下:
    
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0
        int i;
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
    
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"   
            "pushl %1
    	"          
            "pushl %0
    	"        
            "ret
    	"      
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   
        );
    }
    
    
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                  printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    
    另外还要修改myinterrupt.c文件,增加进程调度函数my_schedule(void),以进行进程切换。其代码如下:
    
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%10000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;     
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            asm volatile(   
                "pushl %%ebp
    	"       
                "movl %%esp,%0
    	"  
                "movl %2,%%esp
    	"   
                "movl $1f,%1
    	"         
                "pushl %3
    	" 
                "ret
    	"         
                "1:	"                 
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);      
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(   
                "pushl %%ebp
    	"      
                "movl %%esp,%0
    	"    
                "movl %2,%%esp
    	"    
                "movl %2,%%ebp
    	"     
                "movl $1f,%1
    	"         
                "pushl %3
    	" 
                "ret
    	"          
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return; 
    }
    
    可以看出,整个内核的运行过程是:
    首先启动内核,启动0号进程进行初始化,其中0号进程的启动部分使用了内嵌汇编代码编写:
    
        asm volatile(  
            "movl %1,%%esp
    	"     /*将进程原堆栈栈顶的地址(这里是初始化的值)存入ESP寄存器 */  
            "pushl %1
    	"          /* 将当前EBP寄存器值入栈 */  
            "pushl %0
    	"          /* 将当前进程的EIP(这里是初始化的值)入栈*/  
            "ret
    	"               /* ret命令正好可以让入栈的进程EIP保存到EIP寄存器中*/  
            "popl %%ebp
    	"       /*这里永远不会被执行,知识与前面push指令结对出现,是一种编码习惯*/
            :   
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   
        ); 
    
    当进程0的时间片用完(my_process中的i累加到100000000),将利用进程调度函数,运行进程1,其调度过程执行如下:
    
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            asm volatile(   
                "pushl %%ebp
    	"       
                "movl %%esp,%0
    	"  
                "movl %2,%%esp
    	"   
                "movl $1f,%1
    	"         
                "pushl %3
    	" 
                "ret
    	"         
                "1:	"                 
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);      
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(   
                "pushl %%ebp
    	"      
                "movl %%esp,%0
    	"    
                "movl %2,%%esp
    	"    
                "movl %2,%%ebp
    	"     
                "movl $1f,%1
    	"         
                "pushl %3
    	" 
                "ret
    	"          
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );
        }
    
    由于进行1并未被执行过,其调度过程中执行else部分的进程调度代码。
    同理,当进程1的时间片用完,将再次利用调度函数将运行进程0,此时进程0是从新被执行,将使用if部分的进程调度代码。
    由此,每过一个时间片(通过my_process中i的不断模100000000累加),内核将不断在进程0与进程1之间切换。
    

    问题与解决

    本周在搭建内核环境时,在make的过程中,gcc报错。
    


    原因是因为找不到compiler-gcc7.h头文件,进入到文件目录下,发现确实没有该文件,只有compiler-gcc.h、compiler-gcc3.h、compiler-gcc4.h三个文件,猜测可能是因为下载的Linux源文件版本不同的原因。在网上下载compiler-gcc7.h文件后重新编译,内核可正常运行。

  • 相关阅读:
    关于在n-1的数组中找到那个被减去的数及异或与位与
    oracle 递归查询
    EL,OGNL表达式 $ % #
    TypeError: record.get is not a function
    sql添加、查询小错误
    Unity中操作手机常用功能
    Unity 中PlayerPrefs类实现数据本地化存储
    unity3d 下操作excel 与打印
    unity中读写二进制文件
    List排序问题
  • 原文地址:https://www.cnblogs.com/hzj20189205/p/9867412.html
Copyright © 2020-2023  润新知