• 集群因子 例子


    
    
    
    测试:
    create table t1 as select trunc((rownum-1)/100) id,
                      rpad(rownum,100) t_pad
                      from dba_source
                  where rownum<100000;
    
    create index t1_idx1 on t1(id);
    
    
    BEGIN
      DBMS_STATS.GATHER_TABLE_STATS(ownname          => 'HW',
                                    tabname          => 'T1',
                                    estimate_percent => 100,
                                    method_opt       => 'for all columns size skewonly',
                                    no_invalidate    => FALSE,
                                    degree           => 8,
                                    cascade          => TRUE);
    END;
    
    
    
    SQL> select index_name,clustering_factor from user_indexes where table_name='T1';  
    
    INDEX_NAME		       CLUSTERING_FACTOR
    ------------------------------ -----------------
    T1_IDX1 				    1536
    
    
    SQL>  select count(distinct dbms_rowid.rowid_block_number(rowid)) from t1;
    
    COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
    ---------------------------------------------------
    					       1536
    
    SQL> select * from (select id,count(*) from t1 group by id order by id,count(*)) where rownum<10;
    
    	ID   COUNT(*)
    ---------- ----------
    	 0	  100
    	 1	  100
    	 2	  100
    	 3	  100
    	 4	  100
    	 5	  100
    	 6	  100
    	 7	  100
    	 8	  100
    
    9 rows selected.
    
    
    SQL> select * from t1 where id=1;
    
    100 rows selected.
    
    
    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 2623418078
    
    ---------------------------------------------------------------------------------------
    | Id  | Operation		    | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT	    |	      |   100 | 10500 |     3	(0)| 00:00:01 |
    |   1 |  TABLE ACCESS BY INDEX ROWID| T1      |   100 | 10500 |     3	(0)| 00:00:01 |
    |*  2 |   INDEX RANGE SCAN	    | T1_IDX1 |   100 |       |     1	(0)| 00:00:01 |
    ---------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       2 - access("ID"=1)
    
    
    Statistics
    ----------------------------------------------------------
    	  1  recursive calls
    	  0  db block gets
    	 19  consistent gets
    	  0  physical reads
    	  0  redo size
          12649  bytes sent via SQL*Net to client
    	586  bytes received via SQL*Net from client
    	  8  SQL*Net roundtrips to/from client
    	  0  sorts (memory)
    	  0  sorts (disk)
    	100  rows processed
    
    集群因子接近表的块数,索引效率较高。
    
    
    
    2)
    
    create table t2 as select mod(rownum,100) id,
                      rpad(rownum,100) t_pad
                      from dba_source
                  where rownum<100000;
         create index t1_idx2 on t2(id);
             BEGIN
      DBMS_STATS.GATHER_TABLE_STATS(ownname          => 'HW',
                                    tabname          => 'T2',
                                    estimate_percent => 100,
                                    method_opt       => 'for all columns size skewonly',
                                    no_invalidate    => FALSE,
                                    degree           => 8,
                                    cascade          => TRUE);
    END;
    
    SQL> select index_name,clustering_factor from user_indexes where table_name='T2';
    
    INDEX_NAME		       CLUSTERING_FACTOR
    ------------------------------ -----------------
    T1_IDX2 				   99999
    
    SQL> select count(*) from t2;
    
      COUNT(*)
    ----------
         99999
    
    SQL> select count(*) from t2 where id=1;
    
      COUNT(*)
    ----------
          1000
    
    SQL> select 1000/99999 * 100 from dual;
    
    1000/99999*100
    --------------
           1.00001
    
    这个数据比例应该走索引啊!
    
    
    
    SQL> select * from t2 where id=1;
    
    1000 rows selected.
    
    
    SQL> set pagesize 200
    SQL> set autot trace
    SQL> select * from t2 where id=1;
    
    1000 rows selected.
    
    
    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 1513984157
    
    --------------------------------------------------------------------------
    | Id  | Operation	  | Name | Rows  | Bytes | Cost (%CPU)| Time	 |
    --------------------------------------------------------------------------
    |   0 | SELECT STATEMENT  |	 |  1000 |   101K|   423   (1)| 00:00:06 |
    |*  1 |  TABLE ACCESS FULL| T2	 |  1000 |   101K|   423   (1)| 00:00:06 |
    --------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       1 - filter("ID"=1)
    
    
    Statistics
    ----------------------------------------------------------
    	  0  recursive calls
    	  0  db block gets
           1588  consistent gets
           1517  physical reads
    	  0  redo size
         118709  bytes sent via SQL*Net to client
           1246  bytes received via SQL*Net from client
    	 68  SQL*Net roundtrips to/from client
    	  0  sorts (memory)
    	  0  sorts (disk)
           1000  rows processed
    
    
    确走全表扫描了,逻辑读为1588
    
    强制走索引的逻辑读:
    
    SQL> select /*+ index(t2 T1_IDX2)*/   * from t2 where id=1;
    
    1000 rows selected.
    
    
    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 1418564783
    
    ---------------------------------------------------------------------------------------
    | Id  | Operation		    | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT	    |	      |  1000 |   101K|  1002	(0)| 00:00:13 |
    |   1 |  TABLE ACCESS BY INDEX ROWID| T2      |  1000 |   101K|  1002	(0)| 00:00:13 |
    |*  2 |   INDEX RANGE SCAN	    | T1_IDX2 |  1000 |       |     2	(0)| 00:00:01 |
    ---------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       2 - access("ID"=1)
    
    
    Statistics
    ----------------------------------------------------------
    	  0  recursive calls
    	  0  db block gets
           1071  consistent gets
           1004  physical reads
    	  0  redo size
         121909  bytes sent via SQL*Net to client
           1246  bytes received via SQL*Net from client
    	 68  SQL*Net roundtrips to/from client
    	  0  sorts (memory)
    	  0  sorts (disk)
           1000  rows processed
    

  • 相关阅读:
    Windows远程桌面连接CentOS 7
    CentOS7 系统菜单中添加快捷方式
    CentOS 7 创建桌面快捷方式
    Centos7 可执行程序自定义为系统服务
    CentOS 7 中 Docker 的安装
    CentOS 7 需要安装的常用工具,及centos安装fcitx 搜狗输入法的坑旅
    C++中结构体与类的区别 2
    C++中结构体与类的区别 1
    C++ 11 自旋锁
    Imply.io单机安装
  • 原文地址:https://www.cnblogs.com/hzcya1995/p/13349763.html
Copyright © 2020-2023  润新知