Boost库的pool提供了一个内存池分配器,用于管理在一个独立的、大的分配空间里的动态内存分配。
Boost库的pool主要适用于快速分配同样大小的内存块,尤其是反复分配和释放同样大小的内存块的情况。使用pool内存池主要有以下两个优点:
1. 能够有效地管理许多小型对象的分配和释放工作,避免了自己去管理内存而产生的内存碎片和效率低下问题。
2. 告别程序内存泄漏的烦恼,pool库会在内部对内存自动进行管理,避免了程序员一不小心而造成的内存泄漏问题。
pool库主要提供了四种内存池接口,分别是
pool、object_pool、singleton_pool和pool_allocator/fast_pool_allocator
1. pool
pool是最简单也最容易使用的内存池类,可以返回一个简单数据类型(POD) 的内存指针。它
pool很容易使用,可以像C中的malloc()一样分配内存,然后随意使用。除非有特殊要求,否则不必对分配的内存调用free()释放,pool会很好地管理内存。例如:
view plaincopy to clipboardprint?
#include <boost/pool/pool.hpp>
using namespace boost;
int main()
{
pool<> pl(sizeof(int)); //一个可分配int的内存池
int *p = (int *)pl.malloc(); //必须把void*转换成需要的类型
assert(pl.is_from(p));
pl.free(p); //释放内存池分配的内存块
for (int i = 0;i < 100; ++i) //连续分配大量的内存
{
pl.ordered_malloc(10);
}
}
2. object_pool
object_pool是用于类实例(对象)的内存池,它的功能与pool类似,但会在析构时对所有已经分配的内存块调用析构函数,从而正确地释放资源。
malloc()和free()函数分别分配和释放一块类型为ElementType*的内存块,同样,可以用is_from()来测试内存块的归属,只有是本内存池分配的内存才能被free()释放。但它们被调用时并不调用类的构造函数和析构函数,也就是说操作的是一块原始内存块,里面的值是未定义的,因此我们应当尽量少使用malloc()和free()。
object_pool的特殊之处是construct()和destroy()函数,这两个函数是object_ pool的真正价值所在。construct()实际上是一组函数,有多个参数的重载形式(目前最多支持3个参数,但可以扩展),它先调用malloc()分配内存,然后再在内存块上使用传入的参数调用类的构造函数,返回的是一个已经初始化的对象指针。destory()则先调用对象的析构函数,然后再用free()释放内存块。
这些函数都不会抛出异常,如果内存分配失败,将返回0。
object_pool的用法也是很简单,我们既可以像pool那样分配原始内存块,也可以使用construct()来直接在内存池中创建对象。当然,后一种使用方法是最方便的,也是本书所推荐的。
下面的代码示范了object_pool的用法:
#include <boost/pool/object_pool.hpp>
using namespace boost;
struct demo_class //一个示范用的类
{
public:
int a,b,c;
demo_class(int x = 1, int y = 2, int z = 3):a(x),b(y),c(z){}
};
int main()
{
object_pool<demo_class> pl; //对象内存池
demo_class *p = pl.malloc(); //分配一个原始内存块
assert(pl.is_from(p)); //p指向的内存未经过初始化
assert(p->a!=1 || p->b != 2 || p->c !=3);
p = pl.construct(7, 8, 9); //构造一个对象,可以传递参数
assert(p->a == 7);
object_pool<string> pls; //定义一个分配string对象的内存池
for (int i = 0; i < 10 ; ++i) //连续分配大量string对象
{
string *ps = pls.construct("hello object_pool");
cout << *ps << endl;
}
} //所有创建的对象在这里都被正确析构、释放内存
3. singleton_pool
singleton_pool与pool的接口完全一致,可以分配简单数据类型(POD)的内存指针,但它是一个单件,并提供线程安全。
singleton_pool主要有两个模板类型参数(其余的可以使用缺省值)。第一个Tag仅仅是用于标记不同的单件,可以是空类,甚至是声明。第二个参数RequestedSize等同于pool构造函数中的整数requested_ size,指示pool分配内存块的大小。
singleton_pool的接口与pool完全一致,但成员函数均是静态的,因此不需要声明singleton_pool的实例 ,直接用域操作符::来调用静态成员函数。因为singleton_pool是单件,所以它的生命周期与整个程序同样长,除非手动调用release_memory()或purge_memory(),否则singleton_pool不会自动释放所占用的内存。除了这两点,singleton_pool的用法与pool完全相同。
下面的代码示范了singleton_pool的用法:
#include <boost/pool/singleton_pool.hpp>
using namespace boost;
struct pool_tag{}; //仅仅用于标记的空类
typedef singleton_pool<pool_tag, sizeof(int)> spl; //内存池定义
int main()
{
int *p = (int *)spl::malloc(); //分配一个整数内存块
assert(spl::is_from(p));
spl::release_memory(); //释放所有未被分配的内存
} //spl的内存直到程序结束才完
singleton_pool在使用时最好使用typedef来简化名称,否则会使得类型名过于冗长而难以使用。如代码中所示:
typedef singleton_pool<pool_tag, sizeof(int)> spl;
用于标记的类pool_tag可以再进行简化,直接在模板参数列表中声明tag类,这样可以在一条语句中完成对singleton_pool的类型定义,例如:
typedef singleton_pool<struct pool_tag, sizeof(int)> spl;
singleton_pool为单例类,是对pool的加锁封装,适用于多线程环境,其中所有函数都是静态类型。它的模版参数有5个,
tag:标记而已,无意义;
RequestedSize:block的长度;
UserAllocator:分配子,默认还是default_user_allocator_new_delete;
Mutex:锁机制,默认值最终依赖于系统环境,linux下是pthread_mutex,它是对pthread_mutex_t的封装;
NextSize:内存不足的时候,申请的block数量,默认是32。
最全面的使用singleton_pool类似这样:
typedef boost::singleton_pool<singleton_pool_tag,sizeof(CStudent),default_user_allocator_new_delete,details::pool::default_mutex,200> global;
它暴露的函数和pool相同。
4)pool_allocator/fast_pool_allocator
stl::allocator的替换方案。两者都是基于singleton_pool实现,实现了stl::allocator要求的接口规范。两者的使用相同,区别在于pool_allocator的内部实现调用了ordered_malloc和ordered_free,可以满足对大量的连续内存块的分配请求。fast_pool_allocator 的内部实现调用了malloc和free,比较适合于一次请求单个大内存块的情况,但也适用于通用分配,不过具有一些性能上的缺点。因此推荐使用后者。
#include <boost/pool/pool_alloc.hpp>
#include <vector>
typedef struct student_st
{
char name[10];
int age;
}CStudent;
int main()
{
std::vector<CStudent *,boost::fast_pool_allocator<CStudent *> > v(8);
CStudent *pObj=new CStudent();
v[1]=pObj;
boost::singleton_pool<boost::fast_pool_allocator_tag,sizeof(CStudent *)>::purge_memory();
return 0;
}
fast_pool_allocator的模版参数有四个:类型,分配子,锁类型,内存不足时的申请的block数量,后三者都有默认值,不再说了。
它使用的singleton_pool的tag是boost::fast_pool_allocator_tag。
总结:
boost::pool小巧高效,多多使用,
boost::singleton_pool多线程环境下使用,不要使用两者的ordered_malloc/orderd_free函数。
boost::object_pool不建议使用,可以改造后使用。
pool_allocator/fast_pool_allocator推荐使用后者。用于与STL关连。。