• 【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)


    【CS231n】斯坦福大学李飞飞视觉识别课程笔记

    由官方授权的CS231n课程笔记翻译知乎专栏——智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结。

    在这里插入图片描述

    【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程

    Numpy

    Numpy是Python中用于科学计算的核心库。它提供了高性能的多维数组对象,以及相关工具。

    数组Arrays

    一个numpy数组是一个由不同数值组成的网格。网格中的数据都是同一种数据类型,可以通过非负整型数的元组来访问。维度的数量被称为数组的阶,数组的大小是一个由整型数构成的元组,可以描述数组不同维度上的大小。

    我们可以从列表创建数组,然后利用方括号访问其中的元素:

    import numpy as np
    
    a = np.array([1, 2, 3])   # Create a rank 1 array
    print(type(a))            # Prints "<class 'numpy.ndarray'>"
    print(a.shape)            # Prints "(3,)"
    print(a[0], a[1], a[2])   # Prints "1 2 3"
    a[0] = 5                  # Change an element of the array
    print(a)                  # Prints "[5, 2, 3]"
    
    b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
    print(b.shape)                     # Prints "(2, 3)"
    print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"
    

    Numpy还提供了很多其他创建数组的方法:

    import numpy as np
    
    a = np.zeros((2,2))   # Create an array of all zeros
    print(a)              # Prints "[[ 0.  0.]
                          #          [ 0.  0.]]"
    
    b = np.ones((1,2))    # Create an array of all ones
    print(b)              # Prints "[[ 1.  1.]]"
    
    c = np.full((2,2), 7)  # Create a constant array
    print(c)               # Prints "[[ 7.  7.]
                           #          [ 7.  7.]]"
    
    d = np.eye(2)         # Create a 2x2 identity matrix
    print(d)              # Prints "[[ 1.  0.]
                          #          [ 0.  1.]]"
    
    e = np.random.random((2,2))  # Create an array filled with random values
    print(e)                     # Might print "[[ 0.91940167  0.08143941]
                                 #               [ 0.68744134  0.87236687]]"
    

    其他数组相关方法,请查看文档。

    访问数组

    Numpy提供了多种访问数组的方法。

    切片:和Python列表类似,numpy数组可以使用切片语法。因为数组可以是多维的,所以你必须为每个维度指定好切片。

    import numpy as np
    
    # Create the following rank 2 array with shape (3, 4)
    # [[ 1  2  3  4]
    #  [ 5  6  7  8]
    #  [ 9 10 11 12]]
    a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    
    # Use slicing to pull out the subarray consisting of the first 2 rows
    # and columns 1 and 2; b is the following array of shape (2, 2):
    # [[2 3]
    #  [6 7]]
    b = a[:2, 1:3]
    
    # A slice of an array is a view into the same data, so modifying it
    # will modify the original array.
    print(a[0, 1])   # Prints "2"
    b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1]
    print(a[0, 1])   # Prints "77"
    

    你可以同时使用整型和切片语法来访问数组。但是,这样做会产生一个比原数组低阶的新数组。需要注意的是,这里和MATLAB中的情况是不同的:

    import numpy as np
    
    # Create the following rank 2 array with shape (3, 4)
    # [[ 1  2  3  4]
    #  [ 5  6  7  8]
    #  [ 9 10 11 12]]
    a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    
    # Two ways of accessing the data in the middle row of the array.
    # Mixing integer indexing with slices yields an array of lower rank,
    # while using only slices yields an array of the same rank as the
    # original array:
    row_r1 = a[1, :]    # Rank 1 view of the second row of a
    row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
    print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
    print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"
    
    # We can make the same distinction when accessing columns of an array:
    col_r1 = a[:, 1]
    col_r2 = a[:, 1:2]
    print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)"
    print(col_r2, col_r2.shape)  # Prints "[[ 2]
                                 #          [ 6]
                                 #          [10]] (3, 1)"
    

    整型数组访问:当我们使用切片语法访问数组时,得到的总是原数组的一个子集。整型数组访问允许我们利用其它数组的数据构建一个新的数组:

    import numpy as np
    
    a = np.array([[1,2], [3, 4], [5, 6]])
    
    # An example of integer array indexing.
    # The returned array will have shape (3,) and
    print(a[[0, 1, 2], [0, 1, 0]])  # Prints "[1 4 5]"
    
    # The above example of integer array indexing is equivalent to this:
    print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]"
    
    # When using integer array indexing, you can reuse the same
    # element from the source array:
    print(a[[0, 0], [1, 1]])  # Prints "[2 2]"
    
    # Equivalent to the previous integer array indexing example
    print(np.array([a[0, 1], a[0, 1]]))  # Prints "[2 2]"
    

    整型数组访问语法还有个有用的技巧,可以用来选择或者更改矩阵中每行中的一个元素:

    import numpy as np
    
    # Create a new array from which we will select elements
    a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    
    print(a)  # prints "array([[ 1,  2,  3],
              #                [ 4,  5,  6],
              #                [ 7,  8,  9],
              #                [10, 11, 12]])"
    
    # Create an array of indices
    b = np.array([0, 2, 0, 1])
    
    # Select one element from each row of a using the indices in b
    print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"
    
    # Mutate one element from each row of a using the indices in b
    a[np.arange(4), b] += 10
    
    print(a)  # prints "array([[11,  2,  3],
              #                [ 4,  5, 16],
              #                [17,  8,  9],
              #                [10, 21, 12]])
    

    布尔型数组访问:布尔型数组访问可以让你选择数组中任意元素。通常,这种访问方式用于选取数组中满足某些条件的元素,举例如下:

    import numpy as np
    
    a = np.array([[1,2], [3, 4], [5, 6]])
    
    bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;
                         # this returns a numpy array of Booleans of the same
                         # shape as a, where each slot of bool_idx tells
                         # whether that element of a is > 2.
    
    print(bool_idx)      # Prints "[[False False]
                         #          [ True  True]
                         #          [ True  True]]"
    
    # We use boolean array indexing to construct a rank 1 array
    # consisting of the elements of a corresponding to the True values
    # of bool_idx
    print(a[bool_idx])  # Prints "[3 4 5 6]"
    
    # We can do all of the above in a single concise statement:
    print(a[a > 2])     # Prints "[3 4 5 6]"
    

    为了教程的简介,有很多数组访问的细节我们没有详细说明,可以查看文档。

    数据类型

    每个Numpy数组都是数据类型相同的元素组成的网格。Numpy提供了很多的数据类型用于创建数组。当你创建数组的时候,Numpy会尝试猜测数组的数据类型,你也可以通过参数直接指定数据类型,例子如下:

    import numpy as np
    
    x = np.array([1, 2])   # Let numpy choose the datatype
    print(x.dtype)         # Prints "int64"
    
    x = np.array([1.0, 2.0])   # Let numpy choose the datatype
    print(x.dtype)             # Prints "float64"
    
    x = np.array([1, 2], dtype=np.int64)   # Force a particular datatype
    print(x.dtype)                         # Prints "int64"
    

    更多细节查看文档。

    数组计算

    基本数学计算函数会对数组中元素逐个进行计算,既可以利用操作符重载,也可以使用函数方式:

    import numpy as np
    
    x = np.array([[1,2],[3,4]], dtype=np.float64)
    y = np.array([[5,6],[7,8]], dtype=np.float64)
    
    # Elementwise sum; both produce the array
    # [[ 6.0  8.0]
    #  [10.0 12.0]]
    print(x + y)
    print(np.add(x, y))
    
    # Elementwise difference; both produce the array
    # [[-4.0 -4.0]
    #  [-4.0 -4.0]]
    print(x - y)
    print(np.subtract(x, y))
    
    # Elementwise product; both produce the array
    # [[ 5.0 12.0]
    #  [21.0 32.0]]
    print(x * y)
    print(np.multiply(x, y))
    
    # Elementwise division; both produce the array
    # [[ 0.2         0.33333333]
    #  [ 0.42857143  0.5       ]]
    print(x / y)
    print(np.divide(x, y))
    
    # Elementwise square root; produces the array
    # [[ 1.          1.41421356]
    #  [ 1.73205081  2.        ]]
    print(np.sqrt(x))
    

    请注意,与MATLAB不同,* 是元素乘法,而不是矩阵乘法。我们使用该dot函数来计算向量的内积,将向量乘以矩阵,并乘以矩阵。dot既可以作为numpy模块中的函数,也可以作为数组对象的实例方法:

    import numpy as np
    
    x = np.array([[1,2],[3,4]])
    y = np.array([[5,6],[7,8]])
    
    v = np.array([9,10])
    w = np.array([11, 12])
    
    # Inner product of vectors; both produce 219
    print(v.dot(w))
    print(np.dot(v, w))
    
    # Matrix / vector product; both produce the rank 1 array [29 67]
    print(x.dot(v))
    print(np.dot(x, v))
    
    # Matrix / matrix product; both produce the rank 2 array
    # [[19 22]
    #  [43 50]]
    print(x.dot(y))
    print(np.dot(x, y))
    

    Numpy提供了很多计算数组的函数,其中最常用的一个是sum

    import numpy as np
    
    x = np.array([[1,2],[3,4]])
    
    print(np.sum(x))  # Compute sum of all elements; prints "10"
    print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"
    print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"
    

    想要了解更多函数,可以查看文档。

    除了计算,我们还常常改变数组或者操作其中的元素。其中将矩阵转置是常用的一个,在Numpy中,使用T来转置矩阵:

    import numpy as np
    
    x = np.array([[1,2], [3,4]])
    print(x)    # Prints "[[1 2]
                #          [3 4]]"
    print(x.T)  # Prints "[[1 3]
                #          [2 4]]"
    
    # Note that taking the transpose of a rank 1 array does nothing:
    v = np.array([1,2,3])
    print(v)    # Prints "[1 2 3]"
    print(v.T)  # Prints "[1 2 3]"
    

    Numpy还提供了更多操作数组的方法,请查看文档。

    广播Broadcasting

    广播是一种强有力的机制,它让Numpy可以让不同大小的矩阵在一起进行数学计算。我们常常会有一个小的矩阵和一个大的矩阵,然后我们会需要用小的矩阵对大的矩阵做一些计算。

    举个例子,如果我们想要把一个向量加到矩阵的每一行,我们可以这样做:

    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    y = np.empty_like(x)   # Create an empty matrix with the same shape as x
    
    # Add the vector v to each row of the matrix x with an explicit loop
    for i in range(4):
        y[i, :] = x[i, :] + v
    
    # Now y is the following
    # [[ 2  2  4]
    #  [ 5  5  7]
    #  [ 8  8 10]
    #  [11 11 13]]
    print(y)
    

    这样是行得通的,但是当x矩阵非常大,利用循环来计算就会变得很慢很慢。我们可以换一种思路:

    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    vv = np.tile(v, (4, 1))   # Stack 4 copies of v on top of each other
    print(vv)                 # Prints "[[1 0 1]
                              #          [1 0 1]
                              #          [1 0 1]
                              #          [1 0 1]]"
    y = x + vv  # Add x and vv elementwise
    print(y)  # Prints "[[ 2  2  4]
              #          [ 5  5  7]
              #          [ 8  8 10]
              #          [11 11 13]]"
    

    Numpy广播机制可以让我们不用创建vv,就能直接运算,看看下面例子:

    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    y = x + v  # Add v to each row of x using broadcasting
    print(y)  # Prints "[[ 2  2  4]
              #          [ 5  5  7]
              #          [ 8  8 10]
              #          [11 11 13]]"
    

    对两个数组使用广播机制要遵守下列规则:

    1. 如果数组的秩不同,使用1来将秩较小的数组进行扩展,直到两个数组的尺寸的长度都一样。
    2. 如果两个数组在某个维度上的长度是一样的,或者其中一个数组在该维度上长度为1,那么我们就说这两个数组在该维度上是相容的。
    3. 如果两个数组在所有维度上都是相容的,他们就能使用广播。
    4. 如果两个输入数组的尺寸不同,那么注意其中较大的那个尺寸。因为广播之后,两个数组的尺寸将和那个较大的尺寸一样。
    5. 在任何一个维度上,如果一个数组的长度为1,另一个数组长度大于1,那么在该维度上,就好像是对第一个数组进行了复制。

    如果上述解释看不明白,可以读一读文档和这个解释。译者注:强烈推荐阅读文档中的例子。

    支持广播机制的函数是全局函数。哪些是全局函数可以在文档中查找。

    下面是一些广播机制的使用:

    import numpy as np
    
    # Compute outer product of vectors
    v = np.array([1,2,3])  # v has shape (3,)
    w = np.array([4,5])    # w has shape (2,)
    # To compute an outer product, we first reshape v to be a column
    # vector of shape (3, 1); we can then broadcast it against w to yield
    # an output of shape (3, 2), which is the outer product of v and w:
    # [[ 4  5]
    #  [ 8 10]
    #  [12 15]]
    print(np.reshape(v, (3, 1)) * w)
    
    # Add a vector to each row of a matrix
    x = np.array([[1,2,3], [4,5,6]])
    # x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
    # giving the following matrix:
    # [[2 4 6]
    #  [5 7 9]]
    print(x + v)
    
    # Add a vector to each column of a matrix
    # x has shape (2, 3) and w has shape (2,).
    # If we transpose x then it has shape (3, 2) and can be broadcast
    # against w to yield a result of shape (3, 2); transposing this result
    # yields the final result of shape (2, 3) which is the matrix x with
    # the vector w added to each column. Gives the following matrix:
    # [[ 5  6  7]
    #  [ 9 10 11]]
    print((x.T + w).T)
    # Another solution is to reshape w to be a column vector of shape (2, 1);
    # we can then broadcast it directly against x to produce the same
    # output.
    print(x + np.reshape(w, (2, 1)))
    
    # Multiply a matrix by a constant:
    # x has shape (2, 3). Numpy treats scalars as arrays of shape ();
    # these can be broadcast together to shape (2, 3), producing the
    # following array:
    # [[ 2  4  6]
    #  [ 8 10 12]]
    print(x * 2)
    

    广播机制能够让你的代码更简洁更迅速,能够用的时候请尽量使用!

    【CS231n】斯坦福大学李飞飞视觉识别课程笔记(一):Python Numpy教程(1)
    【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)
    【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)

  • 相关阅读:
    s=a+aa+aaa+aaaa+aa...aaaa
    ibatis入门
    ibatis多参数的问题
    异步分页ajax
    8M的摄像头,30fps摄像时,60hz的LCD刷新频率,请问camera每秒向BB传输多少数据,如何计算
    android tcp通讯
    為什麼我的手機連Wi-Fi速度總是卡在75Mbps?Wi-Fi速度解惑~帶你一次看懂!
    mbps和MB/s是怎么换算的
    简说各种wifi无线协议的传输速率
    mil,mm与inch之间的转换
  • 原文地址:https://www.cnblogs.com/hzcya1995/p/13302827.html
Copyright © 2020-2023  润新知