• LA 3363


    Run Length Encoding(RLE) is a simple form of compression. RLE consists of the process for searching for a repeated runs of a single character in a string to be compressed, and replacing them by a single instance of the character and a run count. For example, a string abcccddddddefgggggggggghijk is encoded into a stringab3c6def10ghijk by RLE.

    A new compression method similar to RLE is devised and the rule of the method is as follows: if a substring S<tex2html_verbatim_mark>is repeated k <tex2html_verbatim_mark>times, replace k <tex2html_verbatim_mark>copies of S <tex2html_verbatim_mark>by k(S) <tex2html_verbatim_mark>. For example, letsgogogo is compressed into lets3(go). The length of letsgogogo is 10, and the length of lets3(go) is 9. In general, the length of k(S) <tex2html_verbatim_mark>is (number of digits in k <tex2html_verbatim_mark>) + (length of S <tex2html_verbatim_mark>) + 2 (for `(' and `)'). For example, the length of 123(abc) is 8. It is also possible to nest compression, so the substring S <tex2html_verbatim_mark>may itself be a compressed string. For example,nowletsgogogoletsgogogo could be compressed as a now2(lets3(go)), and nowletsgogogoletsgogogoandrunrunrun could be compressed as now2(lets3(go))and3(run).

    Write a program that, for a given string, gives a shortest compressed string using the compression rules as described above.

    Input 

    Your program is to read from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases T<tex2html_verbatim_mark>is given in the first line of the input. Each test case consists of a single line containing one string of no more than 200 characters drawn from a lower case alphabet. The length of shortest input string is 1.

    Output 

    Your program is to write to standard output. Print exactly one line for each test case. For each test case, print the length of the shortest compressed string.

    The following shows sample input and output for four test cases.

    Sample Input 

    4 
    ababcd 
    letsgogogo 
    nowletsgogogoletsgogogo 
    nowletsgogogoletsgogogoandrunrunrun
    

    Sample Output 

    6 
    9 
    15 
    24

    设dp[l][r]为区间l到r的最小值
    则dp[l][r] = min(dp[l][k] + dp[k + 1][r], v);
    v = dignum(len / k) + 2 + dp[l][l + k - 1]; (区间l r的字符串可以由连续d / k 个以l为起点长度为k的字符串组成)

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <queue>
     7 
     8 using namespace std;
     9 
    10 #define read() freopen("sw.in", "r", stdin)
    11 
    12 const int MAX = 205;
    13 int n;
    14 char str[MAX];
    15 int dp[MAX][MAX];
    16 
    17 int cal(int k) {
    18         int ret = 0;
    19         if (!k) ++ret;
    20         while (k) {
    21                 ret += 1;
    22                 k /= 10;
    23         }
    24         return ret;
    25 }
    26 
    27 bool check(int l, int r, int k) {
    28         for (int i = l + k; i <= r; i += k) {
    29                 for (int j = i; j < i + k; ++j)
    30                 if (str[j] != str[j - k]) return false;
    31         }
    32         return true;
    33 }
    34 
    35 void solve() {
    36 
    37         for (int len = 1; len <= n; ++len) {
    38                 for (int l = 0; l + len - 1 < n; ++l) {
    39                         int r = l + len - 1;
    40                         dp[l][r] = len;
    41                         for (int k = l; k <= r; ++k) {
    42                                 if (k + 1 > r) continue;
    43                                 dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]);
    44                         }
    45 
    46                         for (int k = 1; k <= len / 2; ++k) {
    47                                 if (len % k != 0) continue;
    48                                 if (check(l, r, k)) {
    49                                         dp[l][r] = min(dp[l][r], cal(len / k) + 2 + dp[l][l + k - 1]);
    50                                 }
    51                         }
    52 
    53                 }
    54         }
    55 
    56         printf("%d
    ", dp[0][n - 1]);
    57 }
    58 
    59 int main()
    60 {
    61 
    62     int t;
    63   //  read();
    64     scanf("%d", &t);
    65     while (t--) {
    66             scanf("%s", str);
    67             n = strlen(str);
    68             solve();
    69     }
    70     //cout << "Hello world!" << endl;
    71     return 0;
    72 }
    View Code
  • 相关阅读:
    贝叶斯分类器介绍
    XGBOOST应用及调参示例
    GBDT和XGBOOST算法原理
    CART决策树和随机森林
    PCA与LDA介绍
    回归分析介绍
    KVM图形化管理虚拟机键盘无反应解决办法
    第一次安装CentOs7没有设置root密码,后续启动centos7无法登录------解决办法
    Centos7系统中nginx+tomcat 出现错误 502 Bad Gateway
    Centos7系统中安装Nginx服务
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3850513.html
Copyright © 2020-2023  润新知