• poj 3686


    The Windy's
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 3791   Accepted: 1631

    Description

    The Windy's is a world famous toy factory that owns M top-class workshop to make toys. This year the manager receives N orders for toys. The manager knows that every order will take different amount of hours in different workshops. More precisely, the i-th order will take Zij hours if the toys are making in the j-th workshop. Moreover, each order's work must be wholly completed in the same workshop. And a workshop can not switch to another order until it has finished the previous one. The switch does not cost any time.

    The manager wants to minimize the average of the finishing time of the N orders. Can you help him?

    Input

    The first line of input is the number of test case. The first line of each test case contains two integers, N and M (1 ≤ N,M ≤ 50).
    The next N lines each contain M integers, describing the matrix Zij (1 ≤ Zij ≤ 100,000) There is a blank line before each test case.

    Output

    For each test case output the answer on a single line. The result should be rounded to six decimal places.

    Sample Input

    3
    
    3 4
    100 100 100 1
    99 99 99 1
    98 98 98 1
    
    3 4
    1 100 100 100
    99 1 99 99
    98 98 1 98
    
    3 4
    1 100 100 100
    1 99 99 99
    98 1 98 98
    

    Sample Output

    2.000000
    1.000000
    1.333333
    
    

    Source

     
    每个玩具点对(1 ~ N) * z[i][j]费用的 工厂 建边,求最小费用流
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <queue>
      6 #include <vector>
      7 
      8 using namespace std;
      9 
     10 const int MAX = 60;
     11 const int INF = 1e9 + 7;
     12 int N, M;
     13 int z[MAX][MAX];
     14 struct Edge {int from, to, cap, flow, cost;};
     15 vector<Edge> edges;
     16 vector<int> G[MAX * MAX * MAX + 3 * MAX];
     17 int p[MAX * MAX * MAX + 3 * MAX], a[MAX * MAX * MAX + 3 * MAX];
     18 int d[MAX * MAX * MAX + 3 * MAX];
     19 bool inq[MAX * MAX * MAX + 3 * MAX];
     20 
     21 void add_edge(int from, int to, int cap, int cost) {
     22         edges.push_back(Edge {from, to, cap, 0, cost});
     23         edges.push_back(Edge {to, from, 0, 0, -cost});
     24         int m = edges.size();
     25         G[from].push_back(m - 2);
     26         G[to].push_back(m - 1);
     27 }
     28 
     29 bool bellmanford(int s, int t, int &flow, int &cost) {
     30         for(int i = s; i <= t; ++i) {
     31                 d[i] = INF;
     32         }
     33 
     34         memset(inq, 0, sizeof(inq));
     35         d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
     36 
     37         queue<int> Q;
     38         Q.push(s);
     39         while(!Q.empty()) {
     40                 //printf("fuck
    ");
     41                 int u = Q.front(); Q.pop();
     42                 inq[u] = 0;
     43                 for(int i = 0; i < G[u].size(); ++i) {
     44                         Edge& e = edges[ G[u][i] ];
     45                         if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
     46                                 d[e.to] = d[u] + e.cost;
     47                                 p[e.to] = G[u][i];
     48                                 a[e.to] = min(a[u], e.cap - e.flow);
     49                                 if(!inq[e.to]) {
     50                                         inq[e.to] = 1;
     51                                         Q.push(e.to);
     52                                 }
     53                         }
     54                 }
     55         }
     56 
     57         if(d[t] == INF) return 0;
     58         flow += a[t];
     59         cost += d[t] * a[t];
     60 
     61         int u = t;
     62         while(u != s) {
     63                 edges[p[u]].flow += a[t];
     64                 edges[p[u] ^ 1].flow -= a[t];
     65                 u = edges[p[u]].from;
     66         }
     67 
     68         return 1;
     69 }
     70 
     71 int Mincost(int s, int t) {
     72         int flow = 0, cost = 0;
     73         while(bellmanford(s, t, flow, cost));
     74         return cost;
     75 }
     76 
     77 int main()
     78 {
     79     //freopen("sw.in", "r", stdin);
     80     int t;
     81     scanf("%d", &t);
     82     while(t--) {
     83             scanf("%d%d", &N, &M);
     84             for(int i = 1; i <= N; ++i) {
     85                     for(int j = 1; j <= M; ++j) {
     86                             scanf("%d", &z[i][j]);
     87                             //printf("%d ", z[i][j]);
     88                     }
     89             }
     90 
     91             int s = 0, t = N + N * M + 1;
     92             for(int i = s; i <= t; ++i) G[i].clear();
     93             edges.clear();
     94 
     95             for(int i = 1; i <= N; ++i) {
     96                     add_edge(s, i, 1, 0);
     97             }
     98 
     99 
    100                     for(int j = 1; j <= M; ++j) {
    101                             for(int k = 1; k <= N; ++k) {
    102                                     add_edge(j * N + k, t, 1, 0);
    103                                     for(int i = 1; i <= N; ++i) {
    104                                             add_edge(i, j * N + k, 1, z[i][j] * k);
    105                                     }
    106                             }
    107                     }
    108                     printf("%.6f
    ", (double) Mincost(s, t) / N);
    109 
    110 
    111     }
    112 
    113     //cout << "Hello world!" << endl;
    114     return 0;
    115 }
    View Code
  • 相关阅读:
    Are You Safer With Firefox?(zz)
    IIS+PHP下调用WebService初试
    垃圾链接和网络欺骗
    微软即将发布64位XP和Win2003 SP1(zz)
    今日个人大事记:)
    GT4 Web Service编译和发布初探
    纪念一下QQ等级和在线时长
    今天安装GT3.9.5碰到的问题
    判断32位整数二进制中1的个数
    Windows 2003 SP1新体验
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3724592.html
Copyright © 2020-2023  润新知