• POJ 3292


    Semi-prime H-numbers
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7059   Accepted: 3030

    Description

    This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

    An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

    As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

    For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

    Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

    Input

    Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

    Output

    For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

    Sample Input

    21 
    85
    789
    0

    Sample Output

    21 0
    85 5
    789 62

    Source

     
     
    仿照素数的埃氏筛选法即可
     
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <iostream>
     5 
     6 using namespace std;
     7 
     8 #define maxn 1000005
     9 
    10 bool H[maxn];
    11 int ans[maxn],ele[maxn];
    12 int len = 0;
    13 
    14 
    15 void init() {
    16 
    17         for(int i = 1; i <= maxn - 5; i++) {
    18                 H[i] = (i % 4 == 1);
    19         }
    20 
    21         for(int i = 5; i * i <= maxn - 5; i += 4) {
    22                 if(!H[i]) continue;
    23                 for(int j = i; j * i <= maxn - 5; j++) {
    24                         H[j * i] = 0;
    25                 }
    26         }
    27 
    28         for(int i = 5; i <= maxn - 5; i += 4) {
    29                 if(H[i]) {
    30                         ele[len++] = i;
    31                 }
    32         }
    33 
    34         for(int i = 0; i < len && ele[i] * ele[i] <= maxn - 5; i++) {
    35                 for(int j = i; j < len && ele[j] * ele[i] <= maxn - 5; j++) {
    36                         if(ele[i] * ele[j] % 4 == 1)
    37                         ans[ ele[i] * ele[j] ] = 1;
    38                 }
    39         }
    40 
    41         for(int i = 0; i <=  maxn - 5; i++) {
    42                 ans[i] += ans[i - 1];
    43         }
    44 }
    45 
    46 int main() {
    47        // freopen("sw.in","r",stdin);
    48 
    49         init();
    50 
    51         int x;
    52         while(~scanf("%d",&x) && x) {
    53                 printf("%d %d
    ",x,ans[x]);
    54         }
    55 
    56         return 0;
    57 
    58 }
    View Code
  • 相关阅读:
    【Luogu】P1402 酒店之王 题解
    CSP/S 2019 游记
    【Luogu】P1306 斐波那契公约数 题解
    【Luogu】P1072 Hankson 的趣味题 题解
    字符串函数
    对数换底公式
    round(x,y)和format(x,y)
    约束和索引
    复合主键对外键的影响
    外键
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3592625.html
Copyright © 2020-2023  润新知