• cf div2 234 D


    D. Dima and Bacteria
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Dima took up the biology of bacteria, as a result of his experiments, he invented k types of bacteria. Overall, there are n bacteria at his laboratory right now, and the number of bacteria of type i equals ci. For convenience, we will assume that all the bacteria are numbered from 1 to n. The bacteria of type ci are numbered from to .

    With the help of special equipment Dima can move energy from some bacteria into some other one. Of course, the use of such equipment is not free. Dima knows m ways to move energy from some bacteria to another one. The way with number i can be described with integers ui, vi and xi mean that this way allows moving energy from bacteria with number ui to bacteria with number vi or vice versa for xi dollars.

    Dima's Chef (Inna) calls the type-distribution correct if there is a way (may be non-direct) to move energy from any bacteria of the particular type to any other bacteria of the same type (between any two bacteria of the same type) for zero cost.

    As for correct type-distribution the cost of moving the energy depends only on the types of bacteria help Inna to determine is the type-distribution correct? If it is, print the matrix d with size k × k. Cell d[i][j] of this matrix must be equal to the minimal possible cost of energy-moving from bacteria with type i to bacteria with type j.

    Input

    The first line contains three integers n, m, k (1 ≤ n ≤ 105; 0 ≤ m ≤ 105; 1 ≤ k ≤ 500). The next line contains k integers c1, c2, ..., ck (1 ≤ ci ≤ n). Each of the next m lines contains three integers ui, vi, xi (1 ≤ ui, vi ≤ 105; 0 ≤ xi ≤ 104). It is guaranteed that .

    Output

    If Dima's type-distribution is correct, print string «Yes», and then k lines: in the i-th line print integers d[i][1], d[i][2], ..., d[i][k] (d[i][i] = 0). If there is no way to move energy from bacteria i to bacteria j appropriate d[i][j] must equal to -1. If the type-distribution isn't correct print «No».

    Sample test(s)
    Input
    4 4 2
    1 3
    2 3 0
    3 4 0
    2 4 1
    2 1 2
    Output
    Yes
    0 2
    2 0
    Input
    3 1 2
    2 1
    1 2 0
    Output
    Yes
    0 -1
    -1 0
    Input
    3 2 2
    2 1
    1 2 0
    2 3 1
    Output
    Yes
    0 1
    1 0
    Input
    3 0 2
    1 2
    Output
    No

    好吧,cf第四道居然这么水,虽然死长死长的,每个类型中取一个点深搜只走权为0的路,然后判断能不能覆盖同类型的所有点即可判断,然后更新dis[i][j] ( 1<=i<= k, 1<=j<=k)的值,走一次floyd即可
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 #include <iostream>
      5 
      6 using namespace std;
      7 
      8 #define maxn 100005
      9 
     10 int n,m,k;
     11 int c[505],first[maxn],next[2 * maxn],v[2 * maxn],x[2 * maxn],dis[505][505],u1[2 * maxn];
     12 bool flag = 1;
     13 bool vis[maxn];
     14 
     15 void addedge(int a,int b,int id) {
     16         int e = first[a];
     17         next[id] = e;
     18         first[a] = id;
     19 }
     20 
     21 void dfs(int u,int type) {
     22         vis[u] = 1;
     23         //printf("u = %d type = %d
    ",u,type);
     24         for(int e = first[u]; e != -1; e = next[e]) {
     25                 if(!vis[ v[e] ] && x[e] == 0) {
     26                         dfs(v[e],type);
     27                 }
     28         }
     29 }
     30 void solve() {
     31         for(int i = 1; i <= k; i++) {
     32                 memset(vis,0,sizeof(vis));
     33                 dfs(c[i],i);
     34 
     35                 for(int j = c[i - 1] + 1; j <= c[i]; j++) {
     36                         if(!vis[j]) {
     37                             flag = 0;
     38                             //printf(" i = %d
    ",i);
     39                             return;
     40                         }
     41                 }
     42 
     43         }
     44 }
     45 
     46 void floyd() {
     47         for(int p = 1; p <= k; p++) {
     48                 for(int i = 1; i <= k; i++) {
     49                         for(int j = 1; j <= k; j++) {
     50                                 if(dis[i][p] != -1 && dis[p][j] != -1) {
     51                                          dis[i][j] = dis[i][j] == -1 ? dis[i][p] + dis[p][j] :
     52                                                     min(dis[i][j],dis[i][p] + dis[p][j]);
     53                                 }
     54                         }
     55                 }
     56         }
     57 }
     58 void output() {
     59         if(flag) {
     60                 printf("Yes
    ");
     61 
     62                 for(int i = 0; i < 2 * m; i += 2 ) {
     63                         int id1,id2;
     64                         id1 = lower_bound(c + 1,c + k + 1,u1[i]) - c;
     65                         id2 = lower_bound(c + 1,c + k + 1,v[i]) - c;
     66                         if(id1 == id2) continue;
     67                         dis[id1][id2] = dis[id2][id1] = dis[id1][id2] == -1 ?
     68                                         x[i] : min(dis[id1][id2],x[i]);
     69                 }
     70 
     71                 floyd();
     72 
     73                 for(int i = 1; i <= k; i++) {
     74                         for(int j = 1; j <= k; j++) {
     75                                 printf("%d",dis[i][j]);
     76                                 if(j != k) printf(" ");
     77                         }
     78                         printf("
    ");
     79                 }
     80         } else {
     81                 printf("No
    ");
     82         }
     83 }
     84 
     85 
     86 int main() {
     87 
     88         freopen("sw.in","r",stdin);
     89 
     90         scanf("%d%d%d",&n,&m,&k);
     91 
     92         for(int i = 1; i <= k; i++) {
     93                 scanf("%d",&c[i]);
     94         }
     95 
     96         for(int i = 1; i <= k; i++) {
     97                 c[i] += c[i - 1];
     98         }
     99 
    100         for(int i = 1; i <= k; i++) {
    101                 for(int j = 1; j <= k; j++) {
    102                         if(i == j) dis[i][j] = 0;
    103                         else dis[i][j] = -1;
    104                 }
    105         }
    106 
    107 
    108         for(int i = 1; i <= n; i++) first[i] = -1;
    109 
    110         for(int i = 0; i < 2 * m; i = i + 2) {
    111                 int a,b,w;
    112                 scanf("%d%d%d",&u1[i],&v[i],&x[i]);
    113                 v[i + 1] = u1[i];
    114                 u1[i + 1] = v[i];
    115                 x[i + 1] = x[i];
    116                 addedge(u1[i],v[i],i);
    117                 addedge(v[i],u1[i],i + 1);
    118         }
    119 
    120         solve();
    121 
    122         output();
    123 
    124         return 0;
    125 
    126 
    127 }
    View Code
  • 相关阅读:
    物联网解决方案
    热门研究方向
    LC滤波器简单设计法
    LC滤波电路分析,LC滤波电路原理及其时间常数的计算
    ams1117资料汇总
    杂项
    关于天线长度及LC值的计算
    稳压二极管、肖特基二极管、静电保护二极管、TVS管
    SPI、I2C、I2S、UART、GPIO、SDIO、CAN、JTAG的区别及使用方法。
    单片机串口通信电平不匹配的解决电路,5V 3.3V串口通讯
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3585235.html
Copyright © 2020-2023  润新知