2018-10-06 19:44:18
问题描述:
问题求解:
经典的求连通块问题的扩展,问题规模不大,可以暴力求解。
解法一、Brute Force O(n^4)
int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; public int largestIsland(int[][] grid) { int res = Integer.MIN_VALUE; int n = grid.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 1) res = Math.max(res, helper(grid, i, j, new int[n][n])); else { grid[i][j] = 1; res = Math.max(res, helper(grid, i, j, new int[n][n])); grid[i][j] = 0; } } } return res; } private int helper(int[][] grid, int x, int y, int[][] used) { int n = grid.length; int res = 1; used[x][y] = 1; for (int[] dir : dirs) { int px = x + dir[0]; int py = y + dir[1]; if (px < 0 || px >= n || py < 0 || py >= n || used[px][py] == 1 || grid[px][py] == 0) continue; res += helper(grid, px, py, used); } return res; }
解法二、
为每个连通块做上标记,并得到每个连通块的面积,之后再对0进行遍历,依次寻找其四个相邻的边的area,将他们加起来再从中取max。算法总的时间复杂度为O(n ^ 2)。
public int largestIsland(int[][] grid) { int res = Integer.MIN_VALUE; int n = grid.length; Map<Integer, Integer> map = new HashMap<>(); int color = 0; int area = 0; map.put(color++, area); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 1) area = dfs(grid, i, j, ++color); map.put(color, area); res = Math.max(res, area); } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 0) { int curArea = 1; Set<Integer> set = new HashSet<>(); set.add(getColor(grid, i - 1, j)); set.add(getColor(grid, i + 1, j)); set.add(getColor(grid, i, j + 1)); set.add(getColor(grid, i, j - 1)); for (int c : set) { curArea += map.get(c); } res = Math.max(res, curArea); } } } return res; } private int getColor(int[][] grid, int x, int y) { if (x < 0 || x >= grid.length || y < 0 || y >= grid.length) return 0; else return grid[x][y]; } private int dfs(int[][] grid, int x, int y, int color) { if (x < 0 || x >= grid.length || y < 0 || y >= grid.length || grid[x][y] != 1) return 0; grid[x][y] = color; return 1 + dfs(grid, x + 1, y, color) + dfs(grid, x - 1, y, color) + dfs(grid, x, y - 1, color) + dfs(grid, x, y + 1, color); }