• tensorflow基础模型之KMeans算法


    tensorflow执行KMeans算法。

    代码如下:

    from __future__ import print_function

    # Ignore all GPUs, tf random forest does not benefit from it.
    import os

    import numpy as np
    import tensorflow as tf
    from tensorflow.contrib.factorization import KMeans

    os.environ["CUDA_VISIBLE_DEVICES"] = ""

    # 导入MNIST数据
    from tensorflow.examples.tutorials.mnist import input_data

    mnist = input_data.read_data_sets("./tmp/data/", one_hot=True)
    full_data_x = mnist.train.images

    # 参数
    num_steps = 50 # 总训练步数
    batch_size = 1024 # 批处理数量
    k = 25 # 集群数
    num_classes = 10 # 10类数字
    num_features = 784 # 28*28=>784类特征

    # 图像输入
    X = tf.placeholder(tf.float32, shape=[None, num_features])
    # 标签(分配一个标签给中心质点、测试)
    Y = tf.placeholder(tf.float32, shape=[None, num_classes])

    # K-Means 参数
    kmeans = KMeans(inputs=X, num_clusters=k, distance_metric='cosine',
                  use_mini_batch=True)

    # 建立 KMeans 图
    training_graph = kmeans.training_graph()

    if len(training_graph) > 6: # Tensorflow 1.4+
      (all_scores, cluster_idx, scores, cluster_centers_initialized,
        cluster_centers_var, init_op, train_op) = training_graph
    else:
      (all_scores, cluster_idx, scores, cluster_centers_initialized,
        init_op, train_op) = training_graph

    cluster_idx = cluster_idx[0] # fix for cluster_idx being a tuple
    avg_distance = tf.reduce_mean(scores)

    # 初始化参数
    init_vars = tf.global_variables_initializer()

    # 开启TensorFlow会话
    sess = tf.Session(http://www.my516.com)

    # 初始化
    sess.run(init_vars, feed_dict={X: full_data_x})
    sess.run(init_op, feed_dict={X: full_data_x})

    # 训练
    for i in range(1, num_steps + 1):
      _, d, idx = sess.run([train_op, avg_distance, cluster_idx],
                            feed_dict={X: full_data_x})
      if i % 10 == 0 or i == 1:
          print("Step %i, Avg Distance: %f" % (i, d))

    # 分配表前给每个质点
    # 用每轮训练的到理它们最近的质点标签样本计算每个质点的总标签数('idx')
    counts = np.zeros(shape=(k, num_classes))
    for i in range(len(idx)):
      counts[idx[i]] += mnist.train.labels[i]
    # 分配频率最高的标签给质点
    labels_map = [np.argmax(c) for c in counts]
    labels_map = tf.convert_to_tensor(labels_map)

    # 评估
    # centroid_id -> label
    cluster_label = tf.nn.embedding_lookup(labels_map, cluster_idx)
    # 计算准确率
    correct_prediction = tf.equal(cluster_label, tf.cast(tf.argmax(Y, 1), tf.int32))
    accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # 测试模型
    test_x, test_y = mnist.test.images, mnist.test.labels
    print("Test Accuracy:", sess.run(accuracy_op, feed_dict={X: test_x, Y: test_y}))
     

    运行结果:

    Step 1, Avg Distance: 0.341471
    Step 10, Avg Distance: 0.221609
    Step 20, Avg Distance: 0.220328
    Step 30, Avg Distance: 0.219776
    Step 40, Avg Distance: 0.219419
    Step 50, Avg Distance: 0.219154
    Test Accuracy: 0.7127
    ---------------------

  • 相关阅读:
    UWP关于图片缓存的那些破事儿
    UWP中的文件相关操作
    数据结构-快速排序(C#实现)
    C#与Swift异步操作的差异
    Windows环境下使用Clover四叶草引导双硬盘安装OSX 10.11.5原版镜像
    Winform以任意角度旋转PictureBox中的图片的方法
    Xcode调用旧版本库出现Undefined symbols for architecture x86_64: ld: symbol(s) not found for architecture x86_64
    做WP程序时遇到的一些问题及解决方法
    WInform关闭程序的几种方法以及区别。
    显示在标题上的进度条
  • 原文地址:https://www.cnblogs.com/hyhy904/p/11182996.html
Copyright © 2020-2023  润新知