Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
3 Sum是two Sum的变种,可以利用two sum的二分查找法来解决问题。
本题比two sum增加的问题有:解决duplicate问题,3个数相加返回数值而非index。
首先,对数组进行排序。
然后,从0位置开始到倒数第三个位置(num.length-3),进行遍历,假定num[i]就是3sum中得第一个加数,然后从i+1的位置开始,进行2sum的运算。
当找到一个3sum==0的情况时,判断是否在结果hashset中出现过,没有则添加。(利用hashset的value唯一性)
因为结果不唯一,此时不能停止,继续搜索,low和high指针同时挪动。
时间复杂度是O(n2)
实现代码为:
解法一:two pointers
public class Solution { public ArrayList<ArrayList<Integer>> threeSum(int[] num) { ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>(); if(num.length<3||num == null) return res; Arrays.sort(num); for(int i = 0; i <= num.length-3; i++){ if(i==0||num[i]!=num[i-1]){//remove dupicate int low = i+1; int high = num.length-1; while(low<high){ int sum = num[i]+num[low]+num[high]; if(sum == 0){ ArrayList<Integer> unit = new ArrayList<Integer>(); unit.add(num[i]); unit.add(num[low]); unit.add(num[high]); res.add(unit); low++; high--; while(low<high&&num[low]==num[low-1])//remove dupicate low++; while(low<high&&num[high]==num[high+1])//remove dupicate high--; }else if(sum > 0) high --; else low ++; } } } return res; } }
reference:http://www.cnblogs.com/springfor/p/3859670.html
解法二:hashmap
public class Solution { public List<List<Integer>> threeSum(int[] nums) { ArrayList<List<Integer>> res = new ArrayList<List<Integer>>(); if(nums==null||nums.length<3) { return res; } Arrays.sort(nums); HashSet<List<Integer>> set = new HashSet<List<Integer>>(); for(int i = 0; i<=nums.length-3;i++) { if(i==0||nums[i]!=nums[i-1]) { int target = -nums[i]; HashMap<Integer,Integer> map = new HashMap<Integer,Integer>(); for(int j = i+1;j<=nums.length-1;j++) { if(map.containsKey(target-nums[j])) { ArrayList<Integer> unit = new ArrayList<Integer>(); unit.add(nums[i]); unit.add(target-nums[j]); unit.add(nums[j]); if(set.add(unit))res.add(unit); } else { map.put(nums[j],1); } } } } return res; } }