描述
A国有n座城市,每座城市都十分美,这使得A国的民众们非常喜欢旅行。然而,A国的交通十分落后,这里只有m条双向的道路,并且这些道路都十分崎岖,有的甚至还是山路,只能靠步行。通过每条道路的长度、泥泞程度等因素,我们给每条道路评估一个“崎岖度”,表示通过这条道路的不舒适程度。
从X城市经过若干条道路到达Y城市,我们称这次旅行的“代价”为所经过道路“崎岖度”的最大值。当然,如果从X城市到Y城市有多条路线,民众们会自觉选择“代价”最小的路线进行旅行。但是,A国的民众也是有脾气的,如果旅行的“代价”超过了他们的“忍耐度”,他们就不选择这个旅行了,甚至宁愿在家里宅着。
现在A国的国王想进行若干次询问:给定民众的“忍耐度”,问还有多少对城市(X,Y)会存在旅行?请你对国王的每次询问分别给出回答。
从X城市经过若干条道路到达Y城市,我们称这次旅行的“代价”为所经过道路“崎岖度”的最大值。当然,如果从X城市到Y城市有多条路线,民众们会自觉选择“代价”最小的路线进行旅行。但是,A国的民众也是有脾气的,如果旅行的“代价”超过了他们的“忍耐度”,他们就不选择这个旅行了,甚至宁愿在家里宅着。
现在A国的国王想进行若干次询问:给定民众的“忍耐度”,问还有多少对城市(X,Y)会存在旅行?请你对国王的每次询问分别给出回答。
输入格式
第1行三个正整数n、m、Q,分别表示城市数量、道路数量和询问次数。
第2行到第m+1行每行三个正整数x、y、w,表示x号城市和y号城市之间有一条“崎岖度”为w的双向道路。
第m+2行至第m+Q+1行,每行一个正整数k,表示询问中给定的“忍耐度”为k。
第2行到第m+1行每行三个正整数x、y、w,表示x号城市和y号城市之间有一条“崎岖度”为w的双向道路。
第m+2行至第m+Q+1行,每行一个正整数k,表示询问中给定的“忍耐度”为k。
输出格式
共Q行,对于每次询问做出回答。
测试样例1
输入
5 5 2
1 2 1
2 3 2
3 4 1
4 5 4
5 1 1
1
2
输出
4
10
备注
【样例说明】
第一个询问:(1,2)、(1,5)、(2,5)、(3,4)。其中(2,5)的具体走法为:2-1-5
第二个询问:(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)。其中(4,5)的具体走法为:4-3-2-1-5
【数据规模】
对于20%的数据满足n<=20,m<=40,Q<=40;
对于40%的数据满足n<=1000,m<=2000,Q<=1000;
对于60%的数据满足n<=3000,m<=6000,Q<=200000;
对于100%的数据满足n<=100000,m<=200000,Q<=200000。其他数不超过10^9。
【细节提示】
1 给出的n个城市不一定全部互相连通,且两个城市之间可能存在多条道路,也可能存在某条边是从某城市出发回到他自己。
2 对于询问的结果可能很大,请注意使用适当的类型存储。
第一个询问:(1,2)、(1,5)、(2,5)、(3,4)。其中(2,5)的具体走法为:2-1-5
第二个询问:(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)。其中(4,5)的具体走法为:4-3-2-1-5
【数据规模】
对于20%的数据满足n<=20,m<=40,Q<=40;
对于40%的数据满足n<=1000,m<=2000,Q<=1000;
对于60%的数据满足n<=3000,m<=6000,Q<=200000;
对于100%的数据满足n<=100000,m<=200000,Q<=200000。其他数不超过10^9。
【细节提示】
1 给出的n个城市不一定全部互相连通,且两个城市之间可能存在多条道路,也可能存在某条边是从某城市出发回到他自己。
2 对于询问的结果可能很大,请注意使用适当的类型存储。
并查集预处理,二分忍耐度
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<vector> #include<queue> using namespace std; const int maxn = 300005; struct edge{ int u; int v; int w; }; bool judge(edge a,edge b){ return a.w < b.w; } long long n,m,q,k,a[maxn],req[maxn],val[maxn],pa[maxn]; edge g[maxn]; void input(){ cin>>n>>m>>q; for(int i = 1;i <= m;i++){ scanf("%lld%lld%lld",&g[i].u,&g[i].v,&g[i].w); } sort(g+1,g+1+m,judge); for(int i = 1;i <= n;i++){ pa[i] = i; a[i] = 1; } } int findf(int x){ return x != pa[x] ? pa[x] = findf(pa[x]) : x; } void init(){ int fa,fb; for(int i = 1;i <= m;i++){ req[i] = g[i].w; fa = findf(g[i].u); fb = findf(g[i].v); if(fa != fb){ val[i] = val[i-1] + a[fa] * a[fb]; a[fb] += a[fa]; pa[fa] = fb; }else{ val[i] = val[i-1]; } } } bool check(int t){ return k >= req[t]; } void div(){ int lans = 0,rans = m,mans; while(lans <= rans){ mans = (lans + rans) >> 1; if(check(mans)){ lans = mans + 1; }else{ rans = mans - 1; } } if(check(mans)) cout<<val[mans]<<endl; else cout<<val[mans-1]<<endl; } int main(){ input(); init(); for(int i = 1;i <= q;i++){ scanf("%lld",&k); div(); } return 0; }