• 数据处理不等式:Data Processing Inequality


      我是在差分隐私下看到的,新解决方案的可用性肯定小于原有解决方案的可用性,也就是说信息的后续处理只会降低所拥有的信息量。

      那么如果这么说的话为什么还要做特征工程呢,这是因为该不等式有一个巨大的前提就是数据处理方法无比的强大,比如很多的样本要分类,我们做特征提取后,SVM效果很好 ,但是如果用DNN之类的CNN、AuToEncoder,那么效果反而不如原来特征。这样就能理解了,DNN提取能力更强,那么原始就要有更多的信息,在新特征下无论怎么提取,信息就那么多。

      信息量越多越好么?肯定不是,否则为什么PCA要做降噪和去冗余呢?我们的目的是有效的信息最大化。

      另外一种理解就是从互信息不为0(信息损失)来解释。

      从而

     

      那么如何在处理过程中不丢失有效信息呢?这时候就需要数学上的充分统计量,也就是g是y的充分统计量。

  • 相关阅读:
    Generator函数介绍
    C语言基础三
    C语言基础二
    C语言基础一
    node——路由控制
    Node.js_HTTP模块
    node_Express安装及检验
    conda Pyhon版本切换
    JAVA泛型里面各值代表的意义
    jq实现表格多行列复制
  • 原文地址:https://www.cnblogs.com/hxsyl/p/7771486.html
Copyright © 2020-2023  润新知