• 推荐系统之LFM(二)


      对于一个用户来说,他们可能有不同的兴趣。就以作者举的豆瓣书单的例子来说,用户A会关注数学,历史,计算机方面的书,用户B喜欢机器学习,编程语言,离散数学方面的书, 用户C喜欢大师Knuth, Jiawei Han等人的著作。那我们在推荐的时候,肯定是向用户推荐他感兴趣的类别下的图书。那么前提是我们要对所有item(图书)进行分类。那如何分呢?大家注意到没有,分类标准这个东西是因人而异的,每个用户的想法都不一样。拿B用户来说,他喜欢的三个类别其实都可以算作是计算机方面的书籍,也就是说B的分类粒度要比A小;拿离散数学来讲,他既可以算作数学,也可当做计算机方面的类别,也就是说有些item不能简单的将其划归到确定的单一类别;拿C用户来说,他倾向的是书的作者,只看某几个特定作者的书,那么跟A,B相比它的分类角度就完全不同了。

      显然我们不能靠由单个人(编辑)或team的主观想法建立起来的分类标准对整个平台用户喜好进行标准化。

      此外我们还需要注意的两个问题:

    1. 我们在可见的用户书单中归结出3个类别,不等于该用户就只喜欢这3类,对其他类别的书就一点兴趣也没有。也就是说,我们需要了解用户对于所有类别的兴趣度。
    2. 对于一个给定的类来说,我们需要确定这个类中每本书属于该类别的权重。权重有助于我们确定该推荐哪些书给用户。

      下面我们就来看看LFM是如何解决上面的问题的?对于一个给定的用户行为数据集(数据集包含的是所有的user, 所有的item,以及每个user有过行为的item列表),使用LFM对其建模后,我们可以得到如下图所示的模型:(假设数据集中有3个user, 4个item, LFM建模的分类数为4)

     
     
      R矩阵是user-item矩阵,矩阵值Rij表示的是user i 对item j的兴趣度,这正是我们要求的值。对于一个user来说,当计算出他对所有item的兴趣度后,就可以进行排序并作出推荐。LFM算法从数据集中抽取出若干主题,作为user和item之间连接的桥梁,将R矩阵表示为P矩阵和Q矩阵相乘。其中P矩阵是user-class矩阵,矩阵值Pij表示的是user i对class j的兴趣度;Q矩阵式class-item矩阵,矩阵值Qij表示的是item j在class i中的权重,权重越高越能作为该类的代表。所以LFM根据如下公式来计算用户U对物品I的兴趣度
      我们发现使用LFM后, 
    1. 我们不需要关心分类的角度,结果都是基于用户行为统计自动聚类的,全凭数据自己说了算。
    2. 不需要关心分类粒度的问题,通过设置LFM的最终分类数就可控制粒度,分类数越大,粒度约细。
    3. 对于一个item,并不是明确的划分到某一类,而是计算其属于每一类的概率,是一种标准的软分类。
    4. 对于一个user,我们可以得到他对于每一类的兴趣度,而不是只关心可见列表中的那几个类。
    5. 对于每一个class,我们可以得到类中每个item的权重,越能代表这个类的item,权重越高

      那么,接下去的问题就是如何计算矩阵P和矩阵Q中参数值。一般做法就是最优化损失函数来求参数。在定义损失函数之前,我们需要准备一下数据集并对兴趣度的取值做一说明。

      数据集应该包含所有的user和他们有过行为的(也就是喜欢)的item。所有的这些item构成了一个item全集。对于每个user来说,我们把他有过行为的item称为正样本,规定兴趣度RUI=1,此外我们还需要从item全集中随机抽样,选取与正样本数量相当的样本作为负样本,规定兴趣度为RUI=0。因此,兴趣的取值范围为[0,1]。

      采样之后原有的数据集得到扩充,得到一个新的user-item集K={(U,I)},其中如果(U,I)是正样本,则RUI=1,否则RUI=0。损失函数如下所示:

      上式中的是用来防止过拟合的正则化项,λ需要根据具体应用场景反复实验得到。损失函数的优化使用随机梯度下降算法:

    1. 通过求参数PUK和QKI的偏导确定最快的下降方向;
    1. 迭代计算不断优化参数(迭代次数事先人为设置),直到参数收敛。



      其中,α是学习速率,α越大,迭代下降的越快。α和λ一样,也需要根据实际的应用场景反复实验得到。本书中,作者在MovieLens数据集上进行实验,他取分类数F=100,α=0.02,λ=0.01。

      综上所述,执行LFM需要:

      1. 根据数据集初始化P和Q矩阵(这是我暂时没有弄懂的地方,这个初始化过程到底是怎么样进行的,还恳请各位童鞋予以赐教。)
      2. 确定4个参数:分类数F,迭代次数N,学习速率α,正则化参数λ。
  • 相关阅读:
    Hdu 5396 Expression (区间Dp)
    Lightoj 1174
    codeforces 570 D. Tree Requests (dfs)
    codeforces 570 E. Pig and Palindromes (DP)
    Hdu 5385 The path
    Hdu 5384 Danganronpa (AC自动机模板)
    Hdu 5372 Segment Game (树状数组)
    Hdu 5379 Mahjong tree (dfs + 组合数)
    Hdu 5371 Hotaru's problem (manacher+枚举)
    Face The Right Way---hdu3276(开关问题)
  • 原文地址:https://www.cnblogs.com/hxsyl/p/4885372.html
Copyright © 2020-2023  润新知