• poj 3237 Tree 树链剖分+线段树


    Description

    You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

    CHANGE i v : Change the weight of the ith edge to v

    NEGATE a b : Negate the weight of every edge on the path from a to b

    QUERY a b: Find the maximum weight of edges on the path from a to b

    Input

    The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.

    Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers a, b and c, describing an edge connecting nodes a and b with weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.

    Output

    For each “QUERY” instruction, output the result on a separate line.

    Sample Input

    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE

    Sample Output

    1
    3
    解析:很纯的一道树链剖分和线段树lazy标记的题,题解也有很多,这里只写下我处理的细节
    细节:
    1. 将边权赋给子节点,所以dfs求解父节点时,就直接给子节点赋予边的权值。同时为了之后的线段树的下标从1 ~ n-1根节点在树链剖分中的index 需要从0开始;
    2.  对于改变某条边的权值,必须知道该边所对应的节点的id, 由于是链式建边的,所以最好使得2 ,3表示为第一条边,这样 i >> 1就表示当初输入时边的序号。
    3. 线段树的pushdown操作注意下即可;(一是出现的位置不同,二是 是否及时pushdown)
    #include<iostream>
    #include
    <cstdio>
    #include
    <algorithm>
    #include
    <cstring>
    using namespace std;
    #define lson l , m , rt<<1
    #define rson m+1, r, rt<<1|1
    #define inf 0x3f3f3f3f
    #define MS1(a) memset(a,-1,sizeof(a))
    const int maxn = 100007;
    int head[maxn], tot, pos, son[maxn];
    void init(){
        memset(head,
    0, sizeof(head));
        pos
    = 0; tot = 1;
        MS1(son);
    }
    struct edge{
       
    int to, w, nxt;
    }e[maxn
    <<1];

    inline
    void ins(int u, int v,int w = 0)
    {
        e[
    ++tot].nxt = head[u];
        e[tot].to
    = v;
        e[tot].w
    = w;
        head[u]
    = tot;
    }
    int idx[maxn], weight[maxn];
    int fa[maxn], cnt[maxn], dept[maxn];
    void dfs(int u,int pre,int dep)
    {
        cnt[u]
    = 1;
        fa[u]
    = pre;
        dept[u]
    = dep;
       
    for(int i = head[u]; i; i = e[i].nxt){
           
    int v = e[i].to;
           
    if(v != pre){
                weight[v]
    = e[i].w;                       // 建线段树时,根据点来得到边权
                  idx[i>>1] = v;                            // change 边的id -> 子节点;
                dfs(v, u, dep
    +1);
                cnt[u]
    += cnt[v];
               
    if(son[u] == -1 || cnt[son[u]] < cnt[v])
                    son[u]
    = v;
            }
        }
    }
    int p[maxn], fp[maxn], top[maxn];

    void dfs(int u,int sp)
    {
        top[u]
    = sp;
        p[u]
    = pos++;   // pos++
        fp[p[u]] = u;
       
    if(son[u] == -1) return ;
        dfs(son[u], sp);
       
    for(int i = head[u]; i; i = e[i].nxt){
           
    int v = e[i].to;
            if(v != fa[u] && v != son[u])
                dfs(v, v);
        }
    }
    
    int mx[maxn], mn[maxn], lazy[maxn];
    void pushup(int rt)
    {
        mx[rt] = max(mx[rt<<1], mx[rt<<1|1]);
        mn[rt] = min(mn[rt<<1], mn[rt<<1|1]);
    }
    void build(int l, int r, int rt)
    {
        if(l == r){
            mx[rt] = mn[rt] = weight[fp[l]];  // l为树链剖分之后点的id,需要转化为之前的id,得到权值;
            return ;
        }
        int m = l + r >> 1;
        if(l <= m) build(lson);
        if(m < r) build(rson);
        pushup(rt);
    }
    void print(int l,int r,int rt)
    {
        if(l == r){
            printf("%d ",mx[rt]);
            return ;
        }
        int m = l + r >> 1;
        print(lson);
        print(rson);
    }
    void pushdown(int rt)
    {
        if(lazy[rt]){
            lazy[rt] = 0;
            rt <<= 1;
         
            int t = -mx[rt];
            mx[rt] = -mn[rt];
            mn[rt] = t;
            lazy[rt] ^= 1;
    
            rt |= 1;
           
            t = -mx[rt];
            mx[rt] = -mn[rt];
            mn[rt] = t;
            lazy[rt] ^= 1;
        }
    }
    int query(int L, int R, int l,int r,int rt)
    {
        if(lazy[rt]) pushdown(rt);
        if(L <= l && r <= R) return mx[rt];
    
        int m = l + r >> 1;
        int mx = -inf;
        if(L <= m) mx = max(mx, query(L, R, lson));
        if(m < R) mx = max(mx, query(L, R, rson));
        return mx;
    }
    int n;
    int query(int u,int v)
    {
        int fu = top[u], fv = top[v];
        int ans = -inf;
        while(fu != fv){
            if(dept[fu] < dept[fv]){
                swap(fu, fv); swap(u, v);
            }
            
            ans = max(ans, query(p[fu], p[u], 1, n-1, 1));
            u = fa[fu];
            fu = top[u];
           
        }
        if(u == v) return ans;
        if(dept[u] < dept[v]) swap(u, v);
        
        return max(ans, query(p[son[v]], p[u], 1, n-1, 1));
    }
    void update(int p,int val,int l,int r,int rt)
    {
        pushdown(rt);
        if(l == r){
            mx[rt] = mn[rt] = val;
            return ;
        }
        int m = l + r >> 1;
        if(p <= m) update(p, val, lson);
        else update(p, val, rson);
        pushup(rt);
    }
    void Change(int pos, int val)
    {
        int id = p[idx[pos]];
        update(id, val, 1, n-1, 1);
    }
    void lazyNegate(int L,int R,int l,int r,int rt)
    {
        if(L <= l && r <= R){
           
            int t = mx[rt];
            mx[rt] = -mn[rt];
            mn[rt] = -t;
            lazy[rt] ^= 1;
            return ;
        }
        pushdown(rt);
        int m = l + r >> 1;
        if(L <= m) lazyNegate(L, R, lson);
        if(m < R) lazyNegate(L, R, rson);
        pushup(rt);
    }
    void Negate(int u,int v)
    {
        int fu = top[u], fv = top[v];
        while(fu != fv){
            if(dept[fu] < dept[fv]){
                swap(fu, fv); swap(u, v);
            }
            lazyNegate(p[fu], p[u], 1, n-1, 1);
            u = fa[fu];
            fu = top[u];
        }
        if(u == v) return ;
        if(dept[u] < dept[v]) swap(u, v);
       
        lazyNegate(p[son[v]], p[u], 1, n-1, 1);
    }
    int main()
    {
        //freopen("in.txt","r", stdin);
        //freopen("out.txt","w",stdout);
        int T;
        cin >> T;
        while(T--){
            init();
            int u, v, w;
            scanf("%d", &n);
            for(int i = 1;i < n; i++){
                scanf("%d%d%d",&u, &v, &w);
                ins(u,v,w);
                ins(v,u,w);
            }
            dfs(1,0,0);
            dfs(1,1);
    
            build(1,n-1,1);
            memset(lazy, 0, sizeof(lazy));
           
            char op[10];
            int a, b, cnt = 0;
            while(scanf("%s", op) == 1, op[0] != 'D'){
                scanf("%d%d", &a, &b);
                if(op[0] == 'Q')
                    printf("%d
    ", query(a, b));
                else if(op[0] == 'C') Change(a, b);
                else Negate(a, b);
                //print(1,n-1,1);
            }
        }
    }
  • 相关阅读:
    JavaScript之作用域和闭包
    mui.openWindow的html5+和web传参的兼容
    HTML5地理定位-Geolocation API
    wepy 编译警告去除办法
    Angular网络请求的封装
    网页资源加载的优化方法
    小DEMO之manifest初体验
    HDU 2846 Repository (字典树 后缀建树)
    mongodb适用和不适用的应用场景
    Codeforces 240E. Road Repairs 最小树形图+输出路径
  • 原文地址:https://www.cnblogs.com/hxer/p/5745596.html
Copyright © 2020-2023  润新知