题意:对于点集S,定义函数F(S)为对S不断扩展到不能扩展时S的点数。一次扩展定义为如果有一个平行于坐标轴的矩形的三个点在S中,则第四个点加入S。
动态在S中加点删点,每次操作完后求F(S)的值。
解:首先有个结论就是,把这些点用平行于坐标轴的线段连接起来,则E值为每个连通块的横坐标种数 * 纵坐标种数之和。
线段树分治 + 可回退化并查集,O(nlog2n)。
1 #include <bits/stdc++.h> 2 3 typedef long long LL; 4 const int N = 300010; 5 6 struct Node { 7 int x, y; 8 Node(int X, int Y) { 9 x = X; 10 y = Y; 11 } 12 }; 13 14 std::map<int, int> mp[N]; 15 int n, m; 16 LL ans[N]; 17 std::vector<Node> v[N << 2]; 18 19 namespace ufs { 20 21 struct opt { 22 int x, y; 23 opt(){} 24 opt(int X, int Y) { 25 x = X, y = Y; 26 } 27 }stk[N * 4]; int top; 28 29 int fa[N * 2], siz[N * 2], s1[N * 2], s2[N * 2], clock; 30 LL tot, stk2[N]; 31 inline void init() { 32 for(int i = 1; i < N; i++) { 33 fa[i] = i; 34 fa[i + N] = i + N; 35 siz[i] = siz[i + N] = 1; 36 s1[i] = s2[i + N] = 1; 37 s2[i] = s1[i + N] = 0; 38 } 39 top = clock = 0; 40 return; 41 } 42 int find(int x) { 43 if(x == fa[x]) return x; 44 return find(fa[x]); 45 } 46 inline LL cal(int x) { 47 return 1ll * s1[x] * s2[x]; 48 } 49 inline void merge(int x, int y) { 50 x = find(x); 51 y = find(y); 52 if(x == y) return; 53 if(siz[x] < siz[y]) { 54 std::swap(x, y); 55 } 56 stk2[++clock] = tot; 57 tot -= cal(x) + cal(y); 58 stk[++top] = opt(y, fa[y]); 59 fa[y] = x; 60 stk[++top] = opt(x, siz[x]); 61 siz[x] += siz[y]; 62 stk[++top] = opt(x, s1[x]); 63 s1[x] += s1[y]; 64 stk[++top] = opt(x, s2[x]); 65 s2[x] += s2[y]; 66 tot += cal(x); 67 return; 68 } 69 inline void erase(int t) { 70 while(clock > t) { 71 tot = stk2[clock--]; 72 s2[stk[top].x] = stk[top].y; 73 top--; 74 s1[stk[top].x] = stk[top].y; 75 top--; 76 siz[stk[top].x] = stk[top].y; 77 top--; 78 fa[stk[top].x] = stk[top].y; 79 top--; 80 } 81 return; 82 } 83 } 84 85 void add(int L, int R, Node x, int l, int r, int o) { 86 if(L <= l && r <= R) { 87 v[o].push_back(x); 88 return; 89 } 90 int mid = (l + r) >> 1; 91 if(L <= mid) { 92 add(L, R, x, l, mid, o << 1); 93 } 94 if(mid < R) { 95 add(L, R, x, mid + 1, r, o << 1 | 1); 96 } 97 return; 98 } 99 100 void solve(int l, int r, int o) { 101 int now = ufs::clock; 102 for(int i = 0; i < (int)v[o].size(); i++) { 103 ufs::merge(v[o][i].x, v[o][i].y + N); 104 //printf("[%d %d] merge %d %d ", l, r, v[o][i].x, v[o][i].y); 105 } 106 if(l == r) { 107 ans[r] = ufs::tot; 108 ufs::erase(now); 109 return; 110 } 111 int mid = (l + r) >> 1; 112 solve(l, mid, o << 1); 113 solve(mid + 1, r, o << 1 | 1); 114 ufs::erase(now); 115 return; 116 } 117 118 int main() { 119 ufs::init(); 120 scanf("%d", &n); 121 for(int i = 1, x, y; i <= n; i++) { 122 scanf("%d%d", &x, &y); 123 if(mp[x][y]) { 124 add(mp[x][y], i - 1, Node(x, y), 1, n, 1); 125 //printf("add : (%d %d) [%d %d] ", x, y, mp[x][y], i - 1); 126 mp[x][y] = 0; 127 } 128 else { 129 mp[x][y] = i; 130 } 131 } 132 std::map<int, int>::iterator it; 133 for(int i = 1; i < N; i++) { 134 for(it = mp[i].begin(); it != mp[i].end(); it++) { 135 if(it->second) { 136 add(it->second, n, Node(i, it->first), 1, n, 1); 137 //printf("add : (%d %d) [%d %d] ", i, it->first, it->second, n); 138 } 139 } 140 } 141 142 solve(1, n, 1); 143 for(int i = 1; i <= n; i++) { 144 printf("%lld ", ans[i]); 145 } 146 return 0; 147 }