• GO语言list剖析


    GO语言list剖析

    本节内容

    1. 使用方法
    2. list提供的方法
    3. 源码剖析

    1. 使用方法

    在GO语言的标准库中,提供了一个container包,这个包中提供了三种数据类型,就是heap,list和ring,本节要讲的是list的使用以及源码剖析。
    要使用GO提供的list链表,则首先需要导入list包,如下所示:

    package main
    import(
    	"container/list"
    )
    

    导入包之后,需要了解list中定义了两种数据类型,Element和List,定义如下:

    // Element is an element of a linked list.
    type Element struct {
        // Next and previous pointers in the doubly-linked list of elements.
        // To simplify the implementation, internally a list l is implemented
        // as a ring, such that &l.root is both the next element of the last
        // list element (l.Back()) and the previous element of the first list
        // element (l.Front()).
        next, prev *Element
    
        // The list to which this element belongs.
        list *List
    
        // The value stored with this element.
        Value interface{}
    }
    
    type List struct {
        root Element // sentinel list element, only &root, root.prev, and root.next are used
        len  int     // current list length excluding (this) sentinel element
    }
    

    Element里面定义了两个Element类型的指针next, prev以及List类型的指针list, Value用来存储值,List里面定义了一个Element作为链表的Root,len作为链表的长度。

    import之后,就可以使用链表了:

    func main()  {
        list_test:=list.New()  // 创建list对象
        list_test.PushBack("123")  // 往List队列尾部插入数据
        list_test.PushBack("456")
        list_test.PushBack("789")
        fmt.Println(list_test.Len())  // 输出list长度
        fmt.Println(list_test.Front())  // 输出list第一个元素
        fmt.Println(list_test.Front().Next())  // 输出list第一个元素的下一个元素
        fmt.Println(list_test.Front().Next().Next())  // 输出list第三个元素
    }
    

    2. list提供的方法

    list提供的方法如下:

    type Element
        func (e *Element) Next() *Element
        func (e *Element) Prev() *Element
    type List
        func New() *List
        func (l *List) Back() *Element   // 返回最后一个元素
        func (l *List) Front() *Element  // 返回第一个元素
        func (l *List) Init() *List  // 链表初始化
        func (l *List) InsertAfter(v interface{}, mark *Element) *Element // 在某个元素前插入
        func (l *List) InsertBefore(v interface{}, mark *Element) *Element  // 在某个元素后插入
        func (l *List) Len() int // 返回链表长度
        func (l *List) MoveAfter(e, mark *Element)  // 把e元素移动到mark之后
        func (l *List) MoveBefore(e, mark *Element)  // 把e元素移动到mark之前
        func (l *List) MoveToBack(e *Element) // 把e元素移动到队列最后
        func (l *List) MoveToFront(e *Element) // 把e元素移动到队列最头部
        func (l *List) PushBack(v interface{}) *Element  // 在队列最后插入元素
        func (l *List) PushBackList(other *List)  // 在队列最后插入接上新队列
        func (l *List) PushFront(v interface{}) *Element  // 在队列头部插入元素
        func (l *List) PushFrontList(other *List) // 在队列头部插入接上新队列
        func (l *List) Remove(e *Element) interface{} // 删除某个元素
    

    3. 源码剖析

    首先,使用list.New()方法,返回的是一个List对象的指针,源码func New() *List { return new(List).Init() }并执行了List对象的Init()方法对list进行初始化,初始化root的prev和next指针以及list的长度。
    之后调用list_test.PushBack("123")在队列尾部插入元素123,源码如下:

    func (l *List) PushBack(v interface{}) *Element {
    	l.lazyInit()
    	return l.insertValue(v, l.root.prev)
    }
    

    调用lazyInit(),如果链表没有初始化,则先初始化一遍,之后,调用list的insertValue方法,insertValue方法初始化节点之后,调用insert方法进行插入链表。

    func (l *List) insertValue(v interface{}, at *Element) *Element {
    	return l.insert(&Element{Value: v}, at)
    }
    

    整篇文章最精髓的地方就在insert方法中了,源码如下:

    func (l *List) insert(e, at *Element) *Element {
    	n := at.next  // 用中间变量n保存at节点的next指针
    	at.next = e  // at节点的next指向要插入的节点
    	e.prev = at  // 要插入的节点e的prev指向at节点
    	e.next = n  // e的next节点指向中间变量n保存的指针
    	n.prev = e  // at节点的下一个节点的prev指向e节点
    	e.list = l  // e节点的list指向链表的root节点
    	l.len++  // 链表的长度加一
    	return e  // 返回刚插入节点的指针
    }
    

    这里的链表结构是双向链表,并且在root节点的prev指针指向了链表的结尾,链表结尾的next指针也指向了root节点,这样,其实形成了一个环形结构,如果是向链表的尾部插入新数据,则将root.prev传递给insert方法的at参数,如果是向头部插入,则将root传递给insert方法的at参数。

    这样做的好处是显而易见的,那就是从链表的尾部插入数据,将不需要遍历一遍链表,而只需要将root节点的prev传递给insert方法中就可以了,大大节省了从尾部插入节点的时间。这段代码我看了很久,觉得这个包中最精髓的地方也就在这了,这也是这篇文章诞生的原因。

    源码如下:

    // Copyright 2009 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    // Package list implements a doubly linked list.
    //
    // To iterate over a list (where l is a *List):
    //	for e := l.Front(); e != nil; e = e.Next() {
    //		// do something with e.Value
    //	}
    //
    package list
    
    // Element is an element of a linked list.
    type Element struct {
    	// Next and previous pointers in the doubly-linked list of elements.
    	// To simplify the implementation, internally a list l is implemented
    	// as a ring, such that &l.root is both the next element of the last
    	// list element (l.Back()) and the previous element of the first list
    	// element (l.Front()).
    	next, prev *Element
    
    	// The list to which this element belongs.
    	list *List
    
    	// The value stored with this element.
    	Value interface{}
    }
    
    // Next returns the next list element or nil.
    func (e *Element) Next() *Element {
    	if p := e.next; e.list != nil && p != &e.list.root {
    		return p
    	}
    	return nil
    }
    
    // Prev returns the previous list element or nil.
    func (e *Element) Prev() *Element {
    	if p := e.prev; e.list != nil && p != &e.list.root {
    		return p
    	}
    	return nil
    }
    
    // List represents a doubly linked list.
    // The zero value for List is an empty list ready to use.
    type List struct {
    	root Element // sentinel list element, only &root, root.prev, and root.next are used
    	len  int     // current list length excluding (this) sentinel element
    }
    
    // Init initializes or clears list l.
    func (l *List) Init() *List {
    	l.root.next = &l.root
    	l.root.prev = &l.root
    	l.len = 0
    	return l
    }
    
    // New returns an initialized list.
    func New() *List { return new(List).Init() }
    
    // Len returns the number of elements of list l.
    // The complexity is O(1).
    func (l *List) Len() int { return l.len }
    
    // Front returns the first element of list l or nil.
    func (l *List) Front() *Element {
    	if l.len == 0 {
    		return nil
    	}
    	return l.root.next
    }
    
    // Back returns the last element of list l or nil.
    func (l *List) Back() *Element {
    	if l.len == 0 {
    		return nil
    	}
    	return l.root.prev
    }
    
    // lazyInit lazily initializes a zero List value.
    func (l *List) lazyInit() {
    	if l.root.next == nil {
    		l.Init()
    	}
    }
    
    // insert inserts e after at, increments l.len, and returns e.
    func (l *List) insert(e, at *Element) *Element {
    	n := at.next
    	at.next = e
    	e.prev = at
    	e.next = n
    	n.prev = e
    	e.list = l
    	l.len++
    	return e
    }
    
    // insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
    func (l *List) insertValue(v interface{}, at *Element) *Element {
    	return l.insert(&Element{Value: v}, at)
    }
    
    // remove removes e from its list, decrements l.len, and returns e.
    func (l *List) remove(e *Element) *Element {
    	e.prev.next = e.next
    	e.next.prev = e.prev
    	e.next = nil // avoid memory leaks
    	e.prev = nil // avoid memory leaks
    	e.list = nil
    	l.len--
    	return e
    }
    
    // Remove removes e from l if e is an element of list l.
    // It returns the element value e.Value.
    func (l *List) Remove(e *Element) interface{} {
    	if e.list == l {
    		// if e.list == l, l must have been initialized when e was inserted
    		// in l or l == nil (e is a zero Element) and l.remove will crash
    		l.remove(e)
    	}
    	return e.Value
    }
    
    // PushFront inserts a new element e with value v at the front of list l and returns e.
    func (l *List) PushFront(v interface{}) *Element {
    	l.lazyInit()
    	return l.insertValue(v, &l.root)
    }
    
    // PushBack inserts a new element e with value v at the back of list l and returns e.
    func (l *List) PushBack(v interface{}) *Element {
    	l.lazyInit()
    	return l.insertValue(v, l.root.prev)
    }
    
    // InsertBefore inserts a new element e with value v immediately before mark and returns e.
    // If mark is not an element of l, the list is not modified.
    func (l *List) InsertBefore(v interface{}, mark *Element) *Element {
    	if mark.list != l {
    		return nil
    	}
    	// see comment in List.Remove about initialization of l
    	return l.insertValue(v, mark.prev)
    }
    
    // InsertAfter inserts a new element e with value v immediately after mark and returns e.
    // If mark is not an element of l, the list is not modified.
    func (l *List) InsertAfter(v interface{}, mark *Element) *Element {
    	if mark.list != l {
    		return nil
    	}
    	// see comment in List.Remove about initialization of l
    	return l.insertValue(v, mark)
    }
    
    // MoveToFront moves element e to the front of list l.
    // If e is not an element of l, the list is not modified.
    func (l *List) MoveToFront(e *Element) {
    	if e.list != l || l.root.next == e {
    		return
    	}
    	// see comment in List.Remove about initialization of l
    	l.insert(l.remove(e), &l.root)
    }
    
    // MoveToBack moves element e to the back of list l.
    // If e is not an element of l, the list is not modified.
    func (l *List) MoveToBack(e *Element) {
    	if e.list != l || l.root.prev == e {
    		return
    	}
    	// see comment in List.Remove about initialization of l
    	l.insert(l.remove(e), l.root.prev)
    }
    
    // MoveBefore moves element e to its new position before mark.
    // If e or mark is not an element of l, or e == mark, the list is not modified.
    func (l *List) MoveBefore(e, mark *Element) {
    	if e.list != l || e == mark || mark.list != l {
    		return
    	}
    	l.insert(l.remove(e), mark.prev)
    }
    
    // MoveAfter moves element e to its new position after mark.
    // If e or mark is not an element of l, or e == mark, the list is not modified.
    func (l *List) MoveAfter(e, mark *Element) {
    	if e.list != l || e == mark || mark.list != l {
    		return
    	}
    	l.insert(l.remove(e), mark)
    }
    
    // PushBackList inserts a copy of an other list at the back of list l.
    // The lists l and other may be the same.
    func (l *List) PushBackList(other *List) {
    	l.lazyInit()
    	for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
    		l.insertValue(e.Value, l.root.prev)
    	}
    }
    
    // PushFrontList inserts a copy of an other list at the front of list l.
    // The lists l and other may be the same.
    func (l *List) PushFrontList(other *List) {
    	l.lazyInit()
    	for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
    		l.insertValue(e.Value, &l.root)
    	}
    }
    
  • 相关阅读:
    1、Spring Cloud Alibaba 新一代微服务解决方案
    springboot整合activemq(1)
    11.springboot+mybatis+dubbo+zookepper
    多线程的使用
    Spring 框架用到的 9 个设计模式汇总
    docker数据卷与数据卷容器
    4.GitHub的使用
    Spring Cloud中Hystrix、Ribbon及Feign的熔断关系
    git如何正确回滚代码
    1)Linux学习笔记:crontab命令
  • 原文地址:https://www.cnblogs.com/huxianglin/p/6924425.html
Copyright © 2020-2023  润新知