• 斯特林数


    第二类斯特林数

    为什么先讲第二类,因为基本都是考第二类

    定义1:(n)个不同的元素拆分成(m)个集合的方案数

    定义2:(n)个不同的球放入(m)个无差别的盒子中,要求盒子非空,有几种方案?

    两种定义显然是一样的,但是基本都是用定义2(我感觉)

    怎么写呢其实本质上就是(dp)

    (dp[i][j])表示(i)个球放到(j)个盒子的方案数

    那么(dp[i][j]=dp[i-1][j-1]+j*dp[i-1][j])

    其实就是第(i)个球是否单独放在一个盒子中

    如果单独放在一个盒子中,那么答案就是(dp[i-1][j-1])

    如果不是单独放在一个盒子中,那么就有(j)个盒子可以放入答案就是(j*dp[i-1][j])

    再来介绍一下第二类斯特林数的通项公式

    (Large S2(n,m)=frac{1}{m!}sum_{k=0}^{m}(-1)^kC(m,k)(m-k)^n)

    这个式子本质上就是利用到容斥的思路求的

    首先假设(m)个盒子不同并且不考虑非空的情况下 答案即为(m^n)

    但是里面包含空盒的情况

    假设有(k)个空盒,那么答案即为(C(m,k)*(m-k)^n) 但是显然不能保证剩下的(m-k)个盒子为非空

    那么就需要容斥 其实就是正负交替进行即可

    最后除以(m!)的原因是因为第二类斯特林数的盒子都是相同的

    再来扯一扯应用

    1 (n)个不同的球,放入(m)个无区别的盒子,不允许盒子为空。

    就是定义答案即为(S2(n,m))

    2 (n)个不同的球,放入(m)个有区别的盒子,不允许盒子为空。

    其实就是对盒子进行全排列即可 (m!*S2(n,m))

    3 (n)个不同的球,放入(m)个无区别的盒子,允许盒子为空。

    枚举放了几个盒子即可 (sum_{k=0}^m S2(n,k))

    4 (n)个不同的球,放入(m)个有区别的盒子,允许盒子为空。

    这个应该是最简单的了 每个球随便放 (m^n)

    第一类斯特林数

    这个不是很常用

    定义(n) 个不同元素构成(m)个圆排列的数目

    圆排列是啥呢,其实就是(1 2 3 4)(2341)一样因为可以进行循环移位

    这个求解也是(dp)

    (dp[i][j])表示前(i)个元素构成(j)个全排列

    (dp[i][j]=dp[i-1][j-1]+(i-1)*dp[i-1][j-1])

    也是分为两种情况是否单独是一个圆排列

    如果单独一个圆排列 那么即为(dp[i-1][j-1])

    不是单独圆排列 那么可以放在任意元素的左边 即为((i-1)*dp[i-1][j-1])

    好像没有通项公式

    放个第一类斯特林数的模板题 链接

    题意如下

    给出N个房间,每个房间的钥匙随机放在某个房间内,概率相同。有K次炸门的机会,求能进入所有房间的可能性

    为多大。但是1号房间不能打开

    思路 钥匙与门呈环形对应关系。打开一个门之后,环内的所有房间都可以进入。问题转变为N个房间形成1~K个环

    的可能性有多大。因为1号门不能破坏,所以s(n,k)-s(n-1,k-1)为实际的构成k个环的方法数,也就是去掉1号独立成

    环的情况。

    代码

    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define debug printf(" I am here
    ");
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<ll,ll> pii;
    mt19937 rnd(time(0));
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int maxn=20+5,inf=0x3f3f3f3f,mod=1e9+7;
    const double eps=1e-10;
    int n,k;
    ll dp[maxn][maxn];
    ll fac[maxn];
    signed main(){
        for(int i=0;i<=20;i++){
            dp[0][i]=1;
            if(i==0){
                fac[i]=1;
            }else{
                fac[i]=fac[i-1]*i;
            }
        }
        for(int i=1;i<=20;i++){
            for(int j=1;j<=20;j++){
                dp[i][j]=dp[i-1][j-1]+(i-1)*dp[i-1][j];
            }
        }
        int _;scanf("%d",&_);
        while(_--){
            scanf("%d%d",&n,&k);
            double ans=1.0*(dp[n][k]-dp[n-1][k-1])/fac[n];
            printf("%.4f
    ",ans);
        }
    
        return 0;
    }
    
    
    卷也卷不过,躺又躺不平
  • 相关阅读:
    prefixspan python
    python avro 数据格式使用demo
    UEBA 学术界研究现状——用户行为异常检测思路:序列挖掘prefixspan,HMM,LSTM/CNN,SVM异常检测,聚类CURE算法
    Dropout, DropConnect ——一个对输出,一个对输入
    成都Uber优步司机奖励政策(4月12日)
    北京Uber优步司机奖励政策(4月12日)
    滴滴快车奖励政策,高峰奖励,翻倍奖励,按成交率,指派单数分级(4月12日)
    MYSQL--慢查询,卡死等处理
    记boost在gcc的一个库链接问题generic_category()
    Linux生成core文件、core文件路径设置
  • 原文地址:https://www.cnblogs.com/hunxuewangzi/p/15174658.html
Copyright © 2020-2023  润新知