• Spark Structured Streaming框架(3)之数据输出源详解


      Spark Structured streaming API支持的输出源有:Console、Memory、File和Foreach。其中Console在前两篇博文中已有详述,而Memory使用非常简单。本文着重介绍File和Foreach两种方式,并介绍如何在源码基本扩展新的输出方式。

    1. File

      Structured Streaming支持将数据以File形式保存起来,其中支持的文件格式有四种:json、text、csv和parquet。其使用方式也非常简单只需设置checkpointLocation和path即可。checkpointLocation是检查点保存的路径,而path是真实数据保存的路径。

    如下所示的测试例子:

    // Create DataFrame representing the stream of input lines from connection to host:port

    val lines = spark.readStream

    .format("socket")

    .option("host", host)

    .option("port", port)

    .load()

    // Split the lines into words

    val words = lines.as[String].flatMap(_.split(" "))

    // Generate running word count

    val wordCounts = words.groupBy("value").count()

    // Start running the query that prints the running counts to the console

    val query = wordCounts.writeStream

    .format("json")

    .option("checkpointLocation","root/jar")

    .option("path","/root/jar")

    .start()

    注意:

        File形式不能设置"compelete"模型,只能设置"Append"模型。由于Append模型不能有聚合操作,所以将数据保存到外部File时,不能有聚合操作。

    2. Foreach

      foreach输出方式只需要实现ForeachWriter抽象类,并实现三个方法,当Structured Streaming接收到数据就会执行其三个方法,如下的测试示例:

    /*

    * Licensed to the Apache Software Foundation (ASF) under one or more

    * contributor license agreements. See the NOTICE file distributed with

    * this work for additional information regarding copyright ownership.

    * The ASF licenses this file to You under the Apache License, Version 2.0

    * (the "License"); you may not use this file except in compliance with

    * the License. You may obtain a copy of the License at

    *

    * http://www.apache.org/licenses/LICENSE-2.0

    *

    * Unless required by applicable law or agreed to in writing, software

    * distributed under the License is distributed on an "AS IS" BASIS,

    * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

    * See the License for the specific language governing permissions and

    * limitations under the License.

    */

    // scalastyle:off println

    package org.apache.spark.examples.sql.streaming

    import org.apache.spark.sql.SparkSession

    /**

    * Counts words in UTF8 encoded, ' ' delimited text received from the network.

    *

    * Usage: StructuredNetworkWordCount <hostname> <port>

    * <hostname> and <port> describe the TCP server that Structured Streaming

    * would connect to receive data.

    *

    * To run this on your local machine, you need to first run a Netcat server

    * `$ nc -lk 9999`

    * and then run the example

    * `$ bin/run-example sql.streaming.StructuredNetworkWordCount

    * localhost 9999`

    */

    object StructuredNetworkWordCount {

    def main(args: Array[String]) {

    if (args.length < 2) {

    System.err.println("Usage: StructuredNetworkWordCount <hostname> <port>")

    System.exit(1)

    }

    val host = args(0)

    val port = args(1).toInt

    val spark = SparkSession

    .builder

    .appName("StructuredNetworkWordCount")

    .getOrCreate()

    import spark.implicits._

    // Create DataFrame representing the stream of input lines from connection to host:port

    val lines = spark.readStream

    .format("socket")

    .option("host", host)

    .option("port", port)

    .load()

    // Start running the query that prints the running counts to the console

    val query = wordCounts.writeStream

    .outputMode("append")

    .foreach(new ForearchWriter[Row]{

            override def open(partitionId:Long,version:Long):Boolean={

                println("open")

                return true

            }

            override def process(value:Row):Unit={

                val spark = SparkSession.builder.getOrCreate()

                val seq = value.mkString.split(" ")

                val row = Row.fromSeq(seq)

                val rowRDD:RDD[Row] = sparkContext.getOrCreate().parallelize[Row](Seq(row))

                

                val userSchema = new StructType().add("name","String").add("age","String")

                val peopleDF = spark.createDataFrame(rowRDD,userSchema)

                peopleDF.createOrReplaceTempView(myTable)

                spark.sql("select * from myTable").show()

            }

            

            override def close(errorOrNull:Throwable):Unit={

                println("close")

            }

         })

    .start()

    query.awaitTermination()

    }

    }

    // scalastyle:on println

      上述程序是直接继承ForeachWriter类的接口,并实现了open()、process()、close()三个方法。若采用显示定义一个类来实现,需要注意Scala的泛型设计,如下所示:

    class myForeachWriter[T<:Row](stream:CatalogTable) extends ForearchWriter[T]{

        override def open(partionId:Long,version:Long):Boolean={

            println("open")

            true

        }

        

        override def process(value:T):Unit={

            println(value)

        }

        

        override def close(errorOrNull:Throwable):Unit={

            println("close")

        }

    }

    3. 自定义

      若上述Spark Structured Streaming API提供的数据输出源仍不能满足要求,那么还有一种方法可以使用:修改源码。

    如下通过实现一种自定义的Console来介绍这种使用方式:

    3.1 ConsoleSink

      Spark有一个Sink接口,用户可以实现该接口的addBatch方法,其中的data参数是接收的数据,如下所示直接将其输出到控制台:

    class ConsoleSink(streamName:String) extends Sink{

        override def addBatch(batchId:Long, data;DataFrame):Unit = {

            data.show()        

        }

    }

    3.2 DataStreamWriter

      在用户自定义的输出形式时,并调用start()方法后,Spark框架会去调用DataStreamWriter类的start()方法。所以用户可以直接在该方法中添加自定义的输出方式,如我们向其传递上述创建的ConsoleSink类示例,如下所示:

    def start():StreamingQuery={

        if(source == "memory"){

            ...

        }else if(source=="foreach"){

            ...

        }else if(source=="consoleSink"){

            val streamName:String = extraOption.get("streamName") mathc{

                case Some(str):str

                case None=>throw new AnalysisException("streamName option must be specified for Sink")

            }

            

            val sink = new consoleSink(streamName)

            df.sparkSession.sessionState.streamingQueryManager.startQuery(

                extraOption.get("queryName"),

                extraOption.get("checkpointLocation"),

                df,

                sink,

                outputMode,

                useTempCheckpointLocaltion = true,

                recoverFromCheckpointLocation = false,

                trigger = trigger

            )

        }else{

            ...

        }

    }

    3.3 Structured Streaming

      在前两部修改和实现完成后,用户就可以按正常的Structured Streaming API方式使用了,唯一不同的是在输出形式传递的参数是"consoleSink"字符串,如下所示:

    def execute(stream:CatalogTable):Unit={

        val spark = SparkSession

    .builder

    .appName("StructuredNetworkWordCount")

    .getOrCreate()

        /**1. 获取数据对象DataFrame*/

        val lines = spark.readStream

    .format("socket")

    .option("host", "localhost")

    .option("port", 9999)

    .load()

        

        /**2. 启动Streaming开始接受数据源的信息*/

        val query:StreamingQuery = lines.writeStream

                    .outputMode("append")

                    .format("consoleSink")

                    .option("streamName","myStream")

                    .start()

                    

        query.awaitTermination()

    }

    4. 参考文献

    [1]. Structured Streaming Programming Guide.

  • 相关阅读:
    html component(htc)入门(转)
    eclipse maven plugin 插件 安装 和 配置
    Error configuring application listener of class org.springframework.web.util.IntrospectorCleanupListener
    局域网下tomcat部署的服务让别人也能访问
    基于geowebcache切片服务的发布
    vee-validate-----专门用来做表单验证的vue插件
    移动端触摸事件
    使用svg显示加载中提示界面
    swiper---h5 跨域解决办法
    html5
  • 原文地址:https://www.cnblogs.com/huliangwen/p/7470705.html
Copyright © 2020-2023  润新知