• 洛谷 题解 P1196 【[NOI2002]银河英雄传说】


    并查集大难题。

    看了题解之后才有思路,调了很久很久才AC,当然要写一篇题解来纪念一下。

    先来分析一下这些指令的特点,很容易发现对于每个M指令,只可能一次移动整个队列,并且是把两个队列首尾相接合并成一个队列,不会出现把一个队列分开的情况,因此,我们必须要找到一个可以一次操作合并两个队列的方法。

    再来看下C指令:判断飞船i和飞船j是否在同一列,若在,则输出它们中间隔了多少艘飞船。我们先只看判断是否在同一列,由于每列一开始都只有一艘飞船,之后开始合并,结合刚刚分析过的M指令,很容易就想到要用并查集来实现。

    fa[i]表示飞船i的祖先节点,即其所在列的队头。

    看见多次求两个点的距离的问题,便想到用前缀和来实现:开一个g数组,g[i]表示飞船i到其所在队列队头的距离,然后飞船i和飞船j之间的飞船数量即为它们到队头的距离之差减一,就是abs(g[i]-g[j])-1

    我们来分析一下:对于原来的队头,它到队头的距离为0,当将它所在的队列移到另一个队列后面时,它到队头的距离就是排在它前面的飞船数,也就是合并前另一个队列的飞船数量。因此,就知道该怎样实现了,我们再建一个数组numnum[i]表示以i为队头的队列的飞船数量,初始时都是1,在每次合并的时候,fx为合并前飞船i的队头,fy为合并前飞船j的队头,每次合并时,先更新g[fx],即给它加上num[fy],然后开始合并,即fa[fx]=fy,最后更新num num[fy]+= num[fx];num[fx]=0

    现在就差最后一步了:如何计算每个飞船到队头的距离。再来分析一下:对于任意一个飞船,我们都知道它的祖先(不一定是队头,但一定间接或直接指向队头),还知道距离它祖先的距离。对于每一个飞船,它到队头的距离,就等于它到它祖先的距离加上它祖先到队头的距离,而它的祖先到队头的距离,也可以变成类似的。可以递归实现,由于每一次更新都要用到已经更新完成的祖先到队头的距离,所以要先递归找到队头,然后在回溯的时候更新(g[i]+=g[fa[i]]),可以把这个过程和find的函数放在一起。

    完整代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN=30000+10;
    int T;
    int fa[MAXN],num[MAXN],g[MAXN];
    inline int read()
    {
    	int tot=0;
    	char c=getchar();
    	while(c<'0'||c>'9')
    		c=getchar();
    	while(c>='0'&&c<='9')
    	{
    		tot=tot*10+c-'0';
    		c=getchar();
    	}
    	return tot;
    }
    inline int find(int k)
    {
    	if(fa[k]==k)return k;
    	int grandfa=find(fa[k]);
    	g[k]+=g[fa[k]];
    	return fa[k]=grandfa;
    }
    int main()
    {
    	T=read();
    	for(int i=1;i<=MAXN-10;i++)fa[i]=i,num[i]=1;
    	char c;
    	int x,y;
    	while(T--)
    	{
    		cin>>c;
    		x=read();y=read();
    		int fx=find(x),fy=find(y);
    		//cout<<c<<" "<<x<<" "<<y<<endl;
    		if(c=='M')
    		{
    			g[fx]+=num[fy];
    			fa[fx]=fy;
    			num[fy]+=num[fx];
    			num[fx]=0;
    		}
    		else
    		{
    			if(fx!=fy)cout<<-1<<endl;
    			else
    				cout<<abs(g[x]-g[y])-1<<endl;
    		}
    		//for(int i=1;i<=5;i++)cout<<fa[i]<<" ";cout<<endl;
    	}
    	return 0;
    }
    

    参考博文:https://www.luogu.org/blog/user24518/solution-p1196

  • 相关阅读:
    EntityFramework.Extended 支持 MySql
    向着那个理想的世界奔跑
    DDD 领域驱动设计-两个实体的碰撞火花
    云自无心水自闲
    JQuery 复制粘贴上传图片插件(textarea 和 tinyMCE)
    理解 .NET Platform Standard
    【补充】Gitlab 部署 CI 持续集成
    DDD 领域驱动设计-领域模型中的用户设计
    CSS float 定位和缩放问题
    JQuery 加载 CSS、JS 文件
  • 原文地址:https://www.cnblogs.com/hulean/p/10834889.html
Copyright © 2020-2023  润新知