1 /* 2 题意:就是源点到终点有多条的路径,每一条路径中都有一段最大的距离! 3 求这些路径中最大距离的最小值! 4 5 Dijkstra, Floyd, spfa都是可以的!只不过是将松弛的条件变一下就行了! 6 7 想了一下,这道题用最小生成树做也可以啊,图总是连通的嘛!所以建一棵最小 8 生成树,然后dfs一下,从源点1,到终点2的路径上,查找边长最大的路径! 9 附上代码..... 10 */ 11 #include<iostream> 12 #include<cstdio> 13 #include<algorithm> 14 #include<cstring> 15 #include<cmath> 16 #include<iomanip> 17 #define INF 0x3f3f3f3f*1.0 18 using namespace std; 19 struct node{ 20 double x, y; 21 }; 22 node nd[205]; 23 double g[205][205]; 24 double d[205]; 25 int vis[205]; 26 int n; 27 28 void Dijkstra(){ 29 memset(vis, 0, sizeof(vis)); 30 d[1]=0.0; 31 int root=1; 32 vis[1]=1; 33 for(int i=2; i<=n; ++i) 34 d[i]=INF; 35 for(int j=1; j<n; ++j){ 36 int p; 37 double minL=INF; 38 for(int i=1; i<=n; ++i){ 39 double dist; 40 if(!vis[i] && d[i]> (dist=max(d[root], g[root][i]))) 41 d[i]=dist; 42 if(!vis[i] && minL>d[i]){ 43 minL=d[i]; 44 p=i; 45 } 46 } 47 if(minL==INF) return; 48 root=p; 49 vis[root]=1; 50 } 51 } 52 53 int main(){ 54 int cnt=0; 55 while(cin>>n && n){ 56 for(int i=1; i<=n; ++i) 57 for(int j=1; j<=n; ++j) 58 g[i][j]=INF; 59 for(int i=1; i<=n; ++i){ 60 double u, v; 61 cin>>nd[i].x>>nd[i].y; 62 for(int j=1; j<i; ++j){ 63 u=nd[i].x-nd[j].x; 64 v=nd[i].y-nd[j].y; 65 g[i][j]=g[j][i]=sqrt(u*u + v*v); 66 } 67 } 68 Dijkstra(); 69 cout<<"Scenario #"<<++cnt<<endl<<"Frog Distance = "; 70 cout<<fixed<<setprecision(3)<<d[2]<<endl; 71 cout<<endl; 72 } 73 return 0; 74 } 75 76 //最小生成树思想 77 #include<iostream> 78 #include<cstdio> 79 #include<algorithm> 80 #include<cstring> 81 #include<cmath> 82 #include<iomanip> 83 #define INF 0x3f3f3f3f*1.0 84 using namespace std; 85 struct node{ 86 double x, y; 87 }; 88 node nd[205]; 89 90 struct EDGE{ 91 int u, v; 92 double dist; 93 }; 94 EDGE edge[21000]; 95 96 bool cmp(EDGE a, EDGE b){ 97 return a.dist < b.dist; 98 } 99 100 double g[205][205]; 101 102 int vis[205], f[205]; 103 int n; 104 105 int getFather(int x){ 106 return x==f[x] ? x : f[x]=getFather(f[x]); 107 } 108 109 bool Union(int a, int b){ 110 int fa=getFather(a), fb=getFather(b); 111 if(fa!=fb){ 112 f[fa]=fb; 113 return true; 114 } 115 return false; 116 } 117 double dd; 118 bool dfs(int cur, double ddd){ 119 vis[cur]=1; 120 if(cur==2){ 121 dd=ddd; 122 return true; 123 } 124 for(int i=1; i<=n; ++i) 125 if(g[cur][i]!=INF && !vis[i]){ 126 if(ddd<g[cur][i]){ 127 if(dfs(i, g[cur][i])) return true; 128 } 129 else if(dfs(i, ddd)) return true; 130 } 131 return false; 132 } 133 134 int main(){ 135 int cnt=0; 136 while(cin>>n && n){ 137 for(int i=1; i<=n; ++i) 138 for(int j=1; j<=n; ++j) 139 g[i][j]=INF; 140 int count=0; 141 for(int i=1; i<=n; ++i){ 142 double u, v; 143 cin>>nd[i].x>>nd[i].y; 144 for(int j=1; j<i; ++j){ 145 u=nd[i].x-nd[j].x; 146 v=nd[i].y-nd[j].y; 147 edge[count].u=i; 148 edge[count].v=j; 149 edge[count++].dist=sqrt(u*u + v*v); 150 } 151 } 152 sort(edge, edge+count, cmp); 153 for(int i=1; i<=n; ++i) 154 f[i]=i; 155 for(int i=0; i<count; ++i){ 156 int u, v; 157 if(Union(u=edge[i].u, v=edge[i].v)) 158 g[u][v]=g[v][u]=edge[i].dist; 159 } 160 memset(vis, 0, sizeof(vis)); 161 dfs(1, 0.0); 162 cout<<"Scenario #"<<++cnt<<endl<<"Frog Distance = "; 163 cout<<fixed<<setprecision(3)<<dd<<endl; 164 cout<<endl; 165 } 166 return 0; 167 }