• UVA12105 Bigger is Better


    Bigger is Better

    https://odzkskevi.qnssl.com/91b457ef612009fbd8a70f1852aad0cc?v=1508483406

    【题解】

    dp[i][j]表示前i位数mod m = j的最小火柴数

    据此找到位数i,从高位开始枚举做即可

    需要与处理iej mod k的值

    mo[i][j][k]表示i * 10^j mod k的值

    注意::::::

    0 mod 任何非零的数 都是 0!!!!!!!!!

     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstdio>
     4 #include <cstdlib>
     5 #include <cstring>
     6 #include <vector> 
     7 #define min(a, b) ((a) < (b) ? (a) : (b))
     8 #define max(a, b) ((a) > (b) ? (a) : (b))
     9 
    10 inline void swap(long long&a, long long&b)
    11 {
    12     long long tmp = a;a = b;b = tmp;
    13 }
    14 
    15 inline void read(long long&x)
    16 {
    17     x = 0;char ch = getchar(), c = ch;
    18     while(ch < '0' || ch > '9')c = ch, ch = getchar();
    19     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    20 }
    21 
    22 const long long INF = 0x3f3f3f3f;
    23 const long long MAXN = 100 + 10;
    24 const long long MAXM = 3000 + 10;
    25 const long long num[10] = {6,2,5,5,4,5,6,3,7,6};
    26 
    27 long long n,m,t,dp[MAXN][MAXM],mo[10][MAXN][MAXM];
    28 
    29 int  main()
    30 {
    31     for(register long long i = 1;i <= 9;++ i)
    32         for(register long long j = 0;j <= MAXN - 10;++ j)
    33             for(register long long k = 1;k <= MAXM - 10;++ k)
    34                 mo[i][j][k] = (j == 0 ? i : (mo[i][j - 1][k] * 10)) % k;
    35     while(scanf("%d", &n) != EOF && n)
    36     {
    37         ++ t;
    38         printf("Case %lld: ", t);
    39         read(m);
    40         memset(dp, 0x3f, sizeof(dp));
    41         dp[0][0] = 0;
    42         for(register long long i = 0;i < n;++ i)
    43             for(register long long j = 0;j < m;++ j)
    44                 for(register long long k = 0;k <= 9;++ k)
    45                     dp[i + 1][(j * 10 + k)%m] = min(dp[i + 1][(j * 10 + k)%m], dp[i][j] + num[k]);
    46         long long flag = 0;
    47         //dp[i][j]表示i位数modm = j的最小火柴数 
    48         //mo[i][j][k]表示iej mod k的值 
    49         for(register long long i = n;i >= 1;-- i)
    50         {
    51             if(dp[i][0] <= n)
    52                 for(register long long k = 9;k >= 1;-- k)
    53                 {
    54                     long long ans = 0;
    55                     if(dp[i - 1][(m - mo[k][i - 1][m])%m] + num[k] <= n)
    56                     {
    57                         flag = 1;
    58                         printf("%lld", k);
    59                         long long tmp = num[k], tmp2 =  mo[k][i - 1][m]; 
    60                         for(register long long j = i - 1;j >= 1;-- j)
    61                         {
    62                             for(register long long kk =  9;kk >= 0;-- kk)
    63                             {
    64                                 if(dp[j - 1][(m - (tmp2 + mo[kk][j - 1][m]) % m) % m] + num[kk] + tmp <= n)
    65                                 {
    66                                     tmp2 = (tmp2 + mo[kk][j - 1][m]) % m;
    67                                     tmp += num[kk];
    68                                     printf("%lld", kk);
    69                                     break;
    70                                 }
    71                             }
    72                         }
    73                         putchar('
    ');
    74                     }
    75                     if(flag)break;
    76                 }
    77             if(flag)break;
    78         }
    79         if(!flag) 
    80         {
    81             if(n >= 6)printf("0
    ");
    82             else printf("-1
    ");
    83         }
    84     } 
    85     return 0;
    86 }
    UVA12105
  • 相关阅读:
    二项队列
    左式堆
    优先级队列
    web.xml配置文件中<async-supported>true</async-supported>报错的解决方案
    Struts2中关于"There is no Action mapped for namespace / and action name"的总结
    spring四种依赖注入方式
    Spring @Resource、@Autowired、@Qualifier的注解注入及区别
    CXF自动生成客户端
    maven update 以后报错。
    Mavne + Spring整合CXF
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7726979.html
Copyright © 2020-2023  润新知