• POJ1328 Radar Installation


    Radar Installation
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 89661   Accepted: 20143

    Description

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

    Figure A Sample Input of Radar Installations


    Input

    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

    The input is terminated by a line containing pair of zeros

    Output

    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

    Sample Input

    3 2
    1 2
    -3 1
    2 1
    
    1 2
    0 2
    
    0 0
    

    Sample Output

    Case 1: 2
    Case 2: 1
    

    Source

     
    【题解】
    每个点对应一段放置的区间,于是问题转化成了区间点覆盖问题。贪心即可
     
     1 #include <iostream>
     2 #include <iostream>
     3 #include <cstdio>
     4 #include <cstdlib>
     5 #include <string>
     6 #include <algorithm>
     7 #include <cmath>
     8 #define min(a, b) ((a) < (b) ? (a) : (b))
     9 
    10 const int INF = 0x7fffffff;
    11 const int MAXN = 1000 + 10;
    12 
    13 inline void read(int &x)
    14 {
    15     x = 0;char ch = getchar(),c = ch;
    16     while(ch < '0' || ch > '9')c = ch, ch = getchar();
    17     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    18     if(c == '-')x = -x;
    19 }
    20 
    21 int n, R, cnt[MAXN], ans, t, ok;
    22 double l[MAXN], r[MAXN], now;
    23 
    24 bool cmp(int a, int b)
    25 {
    26     return l[a] < l[b];
    27 }
    28 
    29 int main()
    30 {
    31     while(scanf("%d%d", &n, &R) && (n + R))
    32     {
    33         ans = now = ok = 0;
    34         register int x,y;
    35         for(register int i = 1;i <= n;++i)
    36         {
    37             cnt[i] = i;
    38             read(x);read(y);
    39             if(R < y) ans = -1,ok = 1;
    40             double tmp = sqrt(R * R - y * y);
    41             l[i] = x - tmp;
    42             r[i] = x + tmp;
    43         }
    44         if(ok)goto L1;
    45         std::sort(cnt + 1, cnt + 1 + n, cmp);
    46         now = -INF;
    47         for(register int i = 1;i <= n;++ i)
    48             if(l[cnt[i]] > now) ans ++, now = r[cnt[i]];
    49             else now = min(now, r[cnt[i]]);
    50 L1:        ;
    51         if(!ans) ans = -1;
    52         printf("Case %d: %d
    ", ++t, ans);
    53     } 
    54     return 0;
    55 } 
    POJ1328
  • 相关阅读:
    协议(五)-从电报机到智能手机
    协议(四)-通信发展史
    NDK历史版本
    android onKeyDown
    设计模式
    Android获取系统时间的多种方法
    USB 3.0规范中译本 第5章 机械结构
    ES6新特性
    08_SQLyog图形化工具介绍
    07_聚合函数,分组查询&limit关键字
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7324279.html
Copyright © 2020-2023  润新知