• 洛谷P2912 [USACO08OCT]牧场散步Pasture Walking [2017年7月计划 树上问题 01]


    P2912 [USACO08OCT]牧场散步Pasture Walking

    题目描述

    The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i.

    Some pairs of pastures are connected by one of N-1 bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has a length of L_i (1 <= L_i <= 10,000).

    The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

    The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between 1 <= L_i <= 10,000 pairs of pastures (each pair given as a query p1,p2 (1 <= p1 <= N; 1 <= p2 <= N).

    POINTS: 200

    有N(2<=N<=1000)头奶牛,编号为1到W,它们正在同样编号为1到N的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第i号牧场上.

    有一些牧场间每两个牧场用一条双向道路相连,道路总共有N - 1条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(1 <= A_i <= N; 1 <= B_i <= N),而它的长度 是 1 <= L_i <= 10,000.在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.

    奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度•每对点以一个询问p1,p2 (1 <= p1 <= N; 1 <= p2 <= N). 的形式给出.

    输入输出格式

    输入格式:
    • Line 1: Two space-separated integers: N and Q

    • Lines 2..N: Line i+1 contains three space-separated integers: A_i, B_i, and L_i

    • Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2
    输出格式:
    • Lines 1..Q: Line i contains the length of the path between the two pastures in query i.

    输入输出样例

    输入样例#1:
    4 2 
    2 1 2 
    4 3 2 
    1 4 3 
    1 2 
    3 2 
    
    输出样例#1:
    2 
    7 
    

    说明

    Query 1: The walkway between pastures 1 and 2 has length 2.

    Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7.

    裸LCA,预处理的时候顺带求到根节点的路径长,答案为len[u] + len[v] - 2 * len[lca(va, vb)]

     1 #include <bits/stdc++.h>
     2 
     3 const int MAXN = 5000 + 10;
     4 
     5 inline void read(int &x)
     6 {
     7     x = 0;char ch = getchar();char c = ch;
     8     while(ch > '9' || ch < '0')c = ch, ch = getchar();
     9     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    10     if(c == '-')x = -x;
    11 }
    12 
    13 inline void swap(int &a, int &b)
    14 {
    15     int tmp = a;
    16     a = b;
    17     b = tmp;
    18 }
    19 
    20 struct Edge{int u,v,w,next;}edge[MAXN >> 1];
    21 int head[MAXN],root,cnt,deep[MAXN],len[MAXN],p[MAXN][20];
    22 int n,m,tmp1,tmp2,tmp3;
    23 bool b[MAXN];
    24 
    25 inline void insert(int a, int b, int c)
    26 {
    27     edge[++cnt] = {a,b,c,head[a]};
    28     head[a] = cnt;
    29 }
    30 
    31 void dfs(int u, int step)
    32 {
    33     for(int pos = head[u];pos;pos = edge[pos].next)
    34     {
    35         int v = edge[pos].v;
    36         if(!b[v])
    37         {
    38             b[v] = true;
    39             deep[v] = step + 1;
    40             len[v] = len[u] + edge[pos].w;
    41             p[v][0] = u;
    42             dfs(v, step + 1);
    43         }
    44     }
    45 }
    46 
    47 inline void yuchuli()
    48 {
    49     b[root] = true;
    50     len[root] = 0;
    51     deep[root] = 0;
    52     dfs(root, 0);
    53     for(int i = 1;(1 << i) <= n;i ++)
    54     {
    55         for(int j = 1;j <= n;j ++)
    56         {
    57             p[j][i] = p[p[j][i - 1]][i - 1];
    58         }
    59     }
    60 }
    61 
    62 inline int lca(int va, int vb)
    63 {
    64     if(deep[va] < deep[vb])swap(va, vb);
    65     int M = 0;
    66     for(;(1 << M) <= n;M ++);
    67     M --;
    68     for(int i = M;i >= 0;i --)
    69         if(deep[va] - (1 << i) >= deep[vb])
    70             va = p[va][i];
    71     if(va == vb)return va;
    72     for(int i = M;i >= 0;i --)
    73         if(p[va][i] != p[vb][i])
    74         {
    75             va = p[va][i];
    76             vb = p[vb][i];
    77         }
    78     return p[va][0];
    79 }
    80 
    81 int main()
    82 {
    83     read(n);read(m);
    84     for(int i = 1;i < n;i ++)
    85     {
    86         read(tmp1);read(tmp2);read(tmp3);
    87         insert(tmp1, tmp2, tmp3);
    88         insert(tmp2, tmp1, tmp3);
    89     }
    90     root = 1;
    91     yuchuli();
    92     for(int i = 1;i <= m;i ++)
    93     {
    94         read(tmp1);read(tmp2);
    95         printf("%d
    ", len[tmp1] + len[tmp2] - 2 * len[lca(tmp1, tmp2)]);
    96     }
    97     return 0;
    98 }
  • 相关阅读:
    卤菜技巧
    JS实现延迟
    软件项目版本号的命名规则及格式
    EF复合主键
    验证码和验证控件
    还原数据库,数据库提示正在还原中的处理办法
    更新汇总行
    centOS7挂在windows移动硬盘方法
    关于this、Echarts中的data
    SQLServer 查看SQL语句的执行时间
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7006949.html
Copyright © 2020-2023  润新知