• day14


    一 模块介绍

    1、什么是模块?

    大家之前在编写ATM作业时,思路是先将程序中都需要有哪些功能定义出来,然后在需要用的地方调用即可。
    比起之前通篇垒代码的方式,将重复要用的功能定义成函数会让程序更加简洁,这不能不算做是一种进步,
    但问题是,随着程序功能越来越多,再将所有的代码都放到一起,程序的组织结构仍然会不清晰,不方便管理,
    以后我们写程序,都是分文件的,如果多个文件中都需要用到同一段功能,难道我们要重复编写该功能吗?很明显不能
    这就需要我们找到一种解决方案,能够将程序中经常要用的功能集合到一起,然后在想用的地方随时导入使用,
    这几乎就是模块的全部含义了
    
    最后总结:
    模块就是一组功能的集合体,我们的程序可以导入模块来复用模块里的功能。
    #常见的场景:一个模块就是一个包含了一组功能的python文件,比如spam.py,模块名为spam,可以通过import spam使用。
    
    #在python中,模块的使用方式都是一样的,但其实细说的话,模块可以分为四个通用类别: 
    
      1 使用python编写的.py文件
    
      2 已被编译为共享库或DLL的C或C++扩展
    
      3 把一系列模块组织到一起的文件夹(注:文件夹下有一个__init__.py文件,该文件夹称之为包)
    
      4 使用C编写并链接到python解释器的内置模块

    2、为何要使用模块?

    #1、从文件级别组织程序,更方便管理
    随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用
    
    #2、拿来主义,提升开发效率
    同样的原理,我们也可以下载别人写好的模块然后导入到自己的项目中使用,这种拿来主义,可以极大地提升我们的开发效率
    
    #ps:
    如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

    3、以spam.py为例来介绍模块的使用:文件名spam.py,模块名spam

    #spam.py
    print('from the spam.py')
    
    money=1000
    
    def read1():
        print('spam模块:',money)
    
    def read2():
        print('spam模块')
        read1()
    
    def change():
        global money
        money=0

    二 使用模块之import

    1、import的使用

    #模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载到内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下 
    
    #test.py
    import spam #只在第一次导入时才执行spam.py内代码,此处的显式效果是只打印一次'from the spam.py',当然其他的顶级代码也都被执行了,只不过没有显示效果.
    import spam
    import spam
    import spam
    
    '''
    执行结果:
    from the spam.py
    '''

    ps:我们可以从sys.module中找到当前已经加载的模块,sys.module是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。

    2、在第一次导入模块时会做三件事,重复导入会直接引用内存中已经加载好的结果

    #1.为源文件(spam模块)创建新的名称空间,在spam中定义的函数和方法若是使用到了global时访问的就是这个名称空间。
    
    #2.在新创建的命名空间中执行模块中包含的代码,见初始导入import spam
        提示:导入模块时到底执行了什么?
        In fact function definitions are also ‘statements’ that are 
        ‘executed’; the execution of a module-level function definition 
        enters the function name in the module’s global symbol table.
        事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放
        入模块全局名称空间表,用globals()可以查看
    
    #3.创建名字spam来引用该命名空间
        这个名字和变量名没什么区别,都是‘第一类的’,且使用spam.名字的方式
        可以访问spam.py文件中定义的名字,spam.名字与test.py中的名字来自
        两个完全不同的地方。

    3、被导入模块有独立的名称空间

    每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突

    #test.py
    import spam 
    money=10
    print(spam.money)
    
    '''
    执行结果:
    from the spam.py
    1000
    '''
    #test.py
    import spam
    def read1():
        print('========')
    spam.read1()
    
    '''
    执行结果:
    from the spam.py
    spam->read1->money 1000
    '''
    #test.py
    import spam
    money=1
    spam.change()
    print(money)
    
    '''
    执行结果:
    from the spam.py
    1
    '''
    复制代码
    #test.py
    import spam
    money=1
    spam.change()
    print(money)
    
    '''
    执行结果:
    from the spam.py
    1
    '''
    复制代码

    4、为模块名起别名

    为已经导入的模块起别名的方式对编写可扩展的代码很有用

    1 import spam as sm
    2 print(sm.money)

    有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能

    #mysql.py
    def sqlparse():
        print('from mysql sqlparse')
    #oracle.py
    def sqlparse():
        print('from oracle sqlparse')
    
    #test.py
    db_type=input('>>: ')
    if db_type == 'mysql':
        import mysql as db
    elif db_type == 'oracle':
        import oracle as db
    
    db.sqlparse() 
    复制代码
    #mysql.py
    def sqlparse():
        print('from mysql sqlparse')
    #oracle.py
    def sqlparse():
        print('from oracle sqlparse')
    
    #test.py
    db_type=input('>>: ')
    if db_type == 'mysql':
        import mysql as db
    elif db_type == 'oracle':
        import oracle as db
    
    db.sqlparse() 
    复制代码

    假设有两个模块xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块

    if file_format == 'xml':
        import xmlreader as reader
    elif file_format == 'csv':
        import csvreader as reader
    data=reader.read_date(filename)
    if file_format == 'xml':
        import xmlreader as reader
    elif file_format == 'csv':
        import csvreader as reader
    data=reader.read_date(filename)

    5、在一行导入多个模块

    1 import sys,os,re

    三 使用模块之from ... import...

    1、from...import...的使用

     1 from spam import read1,read2

    2、from...import 与import的对比

    #唯一的区别就是:使用from...import...则是将spam中的名字直接导入到当前的名称空间中,所以在当前名称空间中,直接使用名字就可以了、无需加前缀:spam.
    
    #from...import...的方式有好处也有坏处
        好处:使用起来方便了
        坏处:容易与当前执行文件中的名字冲突

    验证一:当前位置直接使用read1和read2就好了,执行时,仍然以spam.py文件全局名称空间

    #测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money
    #test.py
    from spam import read1
    money=1000
    read1()
    '''
    执行结果:
    from the spam.py
    spam->read1->money 1000
    '''
    
    #测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1()
    #test.py
    from spam import read2
    def read1():
        print('==========')
    read2()
    
    '''
    执行结果:
    from the spam.py
    spam->read2 calling read
    spam->read1->money 1000
    '''
    复制代码
    #测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money
    #test.py
    from spam import read1
    money=1000
    read1()
    '''
    执行结果:
    from the spam.py
    spam->read1->money 1000
    '''
    
    #测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1()
    #test.py
    from spam import read2
    def read1():
        print('==========')
    read2()
    
    '''
    执行结果:
    from the spam.py
    spam->read2 calling read
    spam->read1->money 1000
    '''
    复制代码

    验证二:如果当前有重名read1或者read2,那么会有覆盖效果。

    #测试三:导入的函数read1,被当前位置定义的read1覆盖掉了
    #test.py
    from spam import read1
    def read1():
        print('==========')
    read1()
    '''
    执行结果:
    from the spam.py
    ==========
    '''

    复制代码
    #测试三:导入的函数read1,被当前位置定义的read1覆盖掉了
    #test.py
    from spam import read1
    def read1():
        print('==========')
    read1()
    '''
    执行结果:
    from the spam.py
    ==========
    '''
    复制代码

    验证三:导入的方法在执行时,始终是以源文件为准的

    from spam import money,read1
    money=100 #将当前位置的名字money绑定到了100
    print(money) #打印当前的名字
    read1() #读取spam.py中的名字money,仍然为1000
    
    '''
    from the spam.py
    100
    spam->read1->money 1000
    '''

    复制代码
    from spam import money,read1
    money=100 #将当前位置的名字money绑定到了100
    print(money) #打印当前的名字
    read1() #读取spam.py中的名字money,仍然为1000
    
    '''
    from the spam.py
    100
    spam->read1->money 1000
    '''
    复制代码

    3、也支持as

    1 from spam import read1 as read

    4、一行导入多个名字

    from spam import read1,read2,money

    5、from...import *

    #from spam import * 把spam中所有的不是以下划线(_)开头的名字都导入到当前位置
    
    #大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
    from spam import * #将模块spam中所有的名字都导入到当前名称空间
    print(money)
    print(read1)
    print(read2)
    print(change)
    
    '''
    执行结果:
    from the spam.py
    1000
    <function read1 at 0x1012e8158>
    <function read2 at 0x1012e81e0>
    <function change at 0x1012e8268>
    '''
    复制代码
    from spam import * #将模块spam中所有的名字都导入到当前名称空间
    print(money)
    print(read1)
    print(read2)
    print(change)
    
    '''
    执行结果:
    from the spam.py
    1000
    <function read1 at 0x1012e8158>
    <function read2 at 0x1012e81e0>
    <function change at 0x1012e8268>
    '''
    复制代码

    可以使用__all__来控制*(用来发布新版本),在spam.py中新增一行

    __all__=['money','read1'] #这样在另外一个文件中用from spam import *就这能导入列表中规定的两个名字

    6、模块循环导入问题

    模块循环/嵌套导入抛出异常的根本原因是由于在python中模块被导入一次之后,就不会重新导入,只会在第一次导入时执行模块内代码

    在我们的项目中应该尽量避免出现循环/嵌套导入,如果出现多个模块都需要共享的数据,可以将共享的数据集中存放到某一个地方

    在程序出现了循环/嵌套导入后的异常分析、解决方法如下

    #示范文件内容如下
    #m1.py
    print('正在导入m1')
    from m2 import y
    
    x='m1'
    
    #m2.py
    print('正在导入m2')
    from m1 import x
    
    y='m2'
    
    #run.py
    import m1
    
    #测试一
    执行run.py会抛出异常
    正在导入m1
    正在导入m2
    Traceback (most recent call last):
      File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/aa.py", line 1, in <module>
        import m1
      File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m1.py", line 2, in <module>
        from m2 import y
      File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m2.py", line 2, in <module>
        from m1 import x
    ImportError: cannot import name 'x'
    
    #测试一结果分析
    先执行run.py--->执行import m1,开始导入m1并运行其内部代码--->打印内容"正在导入m1"
    --->执行from m2 import y 开始导入m2并运行其内部代码--->打印内容“正在导入m2”--->执行from m1 import x,由于m1已经被导入过了,所以不会重新导入,所以直接去m1中拿x,然而x此时并没有存在于m1中,所以报错
    
    
    #测试二:执行文件不等于导入文件,比如执行m1.py不等于导入了m1
    直接执行m1.py抛出异常
    正在导入m1
    正在导入m2
    正在导入m1
    Traceback (most recent call last):
      File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m1.py", line 2, in <module>
        from m2 import y
      File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m2.py", line 2, in <module>
        from m1 import x
      File "/Users/linhaifeng/PycharmProjects/pro01/1 aaaa练习目录/m1.py", line 2, in <module>
        from m2 import y
    ImportError: cannot import name 'y'
    
    
    #测试二分析
    执行m1.py,打印“正在导入m1”,执行from m2 import y ,导入m2进而执行m2.py内部代码--->打印"正在导入m2",执行from m1 import x,此时m1是第一次被导入,执行m1.py并不等于导入了m1,于是开始导入m1并执行其内部代码--->打印"正在导入m1",执行from m1 import y,由于m1已经被导入过了,所以无需继续导入而直接问m2要y,然而y此时并没有存在于m2中所以报错
    
    
    
    # 解决方法:
    方法一:导入语句放到最后
    #m1.py
    print('正在导入m1')
    
    x='m1'
    
    from m2 import y
    
    #m2.py
    print('正在导入m2')
    y='m2'
    
    from m1 import x
    
    方法二:导入语句放到函数中
    #m1.py
    print('正在导入m1')
    
    def f1():
        from m2 import y
        print(x,y)
    
    x = 'm1'
    
    # f1()
    
    #m2.py
    print('正在导入m2')
    
    def f2():
        from m1 import x
        print(x,y)
    
    y = 'm2'
    
    #run.py
    import m1
    
    m1.f1()
    #m1.py
    f1()
    print('正在导入m1')
    import m2
    
    x='m1'
    
    print(m2.y)
    
    
    #m2.py
    print('正在导入m2')
    import m1
    
    y='m2'
    
    #run.py
    import m1

    四 模块的重载 (了解)

    考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块,

    有的同学可能会想到直接从sys.module中删除一个模块不就可以卸载了吗,注意了,你删了sys.module中的模块对象仍然可能被其他程序的组件所引用,因而不会被清楚。

    特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。

    如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。

    def func1():
        print('func1')
    def func1():
        print('func1')
    1 import time,importlib
    2 import aa
    3 
    4 time.sleep(20)
    5 # importlib.reload(aa)
    6 aa.func1()

    1 import time,importlib
    2 import aa
    3 
    4 time.sleep(20)
    5 # importlib.reload(aa)
    6 aa.func1()

    在20秒的等待时间里,修改aa.py中func1的内容,等待test.py的结果。

    打开importlib注释,重新测试

    五 py文件区分两种用途:模块与脚本

    #编写好的一个python文件可以有两种用途:
        一:脚本,一个文件就是整个程序,用来被执行
        二:模块,文件中存放着一堆功能,用来被导入使用
    
    
    #python为我们内置了全局变量__name__,
        当文件被当做脚本执行时:__name__ 等于'__main__'
        当文件被当做模块导入时:__name__等于模块名
    
    #作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
        if __name__ == '__main__':
    #fib.py
    
    def fib(n):    # write Fibonacci series up to n
        a, b = 0, 1
        while b < n:
            print(b, end=' ')
            a, b = b, a+b
        print()
    
    def fib2(n):   # return Fibonacci series up to n
        result = []
        a, b = 0, 1
        while b < n:
            result.append(b)
            a, b = b, a+b
        return result
    
    if __name__ == "__main__":
        import sys
        fib(int(sys.argv[1]))
    
    
    #执行:python fib.py <arguments>
    python fib.py 50 #在命令行

    复制代码
    #fib.py
    
    def fib(n):    # write Fibonacci series up to n
        a, b = 0, 1
        while b < n:
            print(b, end=' ')
            a, b = b, a+b
        print()
    
    def fib2(n):   # return Fibonacci series up to n
        result = []
        a, b = 0, 1
        while b < n:
            result.append(b)
            a, b = b, a+b
        return result
    
    if __name__ == "__main__":
        import sys
        fib(int(sys.argv[1]))
    
    
    #执行:python fib.py <arguments>
    python fib.py 50 #在命令行
  • 相关阅读:
    configuring express for ejs
    if else in EJS
    nodegroupchat exercise
    heap&stack 区别
    如何构建积木式Web应用(引自微软CSDN )
    Configuring IIS: Mapping .* to the aspnet_isapi.dll
    递归遍历XML生成树
    数据库应用:无法更新到数据库
    C#中HashTable的用法
    如何使用Eclipse编译C,C++,JAVA程序
  • 原文地址:https://www.cnblogs.com/hui2002/p/10071563.html
Copyright © 2020-2023  润新知