• BackPropagation_01


    Some questions

    神经网络的结构,即几层网络,输入输出怎么设计才最有效?

    设计几层网络比较好的问题仍然是个黑匣子,没有理论支撑应该怎么设计网络,现在仍是经验使然。

    数学理论证明,三层的神经网络就能够以任意精度逼近任何非线性连续函数。那么为什么还需要有深度网络?

    深层网络一般用于深度学习范畴,一般的分类、回归问题还是传统机器学习算法用的比较多,而深度学习的天空在cv、nlp等需要大量数据的领域。

    在不同应用场合下,激活函数怎么选择?

    没深入研究过,感觉还是靠经验多一些;

    学习率怎么怎么选择?

    学习率的原则肯定是开始大收敛快,后面小逼近全局最优,需要设置动态的学习率。而且最开始的学习率设置大了训练会震荡,设置小了收敛会很慢,这是实际项目中需要调的超参数。

    训练次数设定多少训练出的模型效果更好?

    关于训练次数的问题,一般设置检查点然后让训练到模型过拟合,选择检查点中保存的最优模型权重就好了。次数要能够使得模型过拟合,因为不过拟合就没有达到模型的极限。

    The Unknown Word

    The First Column The Second Column
    LSTM Long-Short Term Memory 长短时期记忆单元
    fine-tunning 微调
    DBN Deep Belief Network 深度信念网络
    unsupervised layer-wise training 无监督逐层训练
    weight sharing 全共享
    #coding:utf-8
    import random
    import math
    
    #
    #   参数解释:
    #   "pd_" :偏导的前缀
    #   "d_" :导数的前缀
    #   "w_ho" :隐含层到输出层的权重系数索引
    #   "w_ih" :输入层到隐含层的权重系数的索引
    
    class NeuralNetwork:
        LEARNING_RATE = 0.5
    
        def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
            self.num_inputs = num_inputs
    
            self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
            self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
    
            self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
            self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
    
        def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
            weight_num = 0
            for h in range(len(self.hidden_layer.neurons)):
                for i in range(self.num_inputs):
                    if not hidden_layer_weights:
                        self.hidden_layer.neurons[h].weights.append(random.random())
                    else:
                        self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
                    weight_num += 1
    
        def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
            weight_num = 0
            for o in range(len(self.output_layer.neurons)):
                for h in range(len(self.hidden_layer.neurons)):
                    if not output_layer_weights:
                        self.output_layer.neurons[o].weights.append(random.random())
                    else:
                        self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
                    weight_num += 1
    
        def inspect(self):
            print('------')
            print('* Inputs: {}'.format(self.num_inputs))
            print('------')
            print('Hidden Layer')
            self.hidden_layer.inspect()
            print('------')
            print('* Output Layer')
            self.output_layer.inspect()
            print('------')
    
        def feed_forward(self, inputs):
            hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
            return self.output_layer.feed_forward(hidden_layer_outputs)
    
        def train(self, training_inputs, training_outputs):
            self.feed_forward(training_inputs)
    
            # 1. 输出神经元的值
            pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
            for o in range(len(self.output_layer.neurons)):
    
                # ∂E/∂zⱼ
                pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
    
            # 2. 隐含层神经元的值
            pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
            for h in range(len(self.hidden_layer.neurons)):
    
                # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
                d_error_wrt_hidden_neuron_output = 0
                for o in range(len(self.output_layer.neurons)):
                    d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
    
                # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
                pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
    
            # 3. 更新输出层权重系数
            for o in range(len(self.output_layer.neurons)):
                for w_ho in range(len(self.output_layer.neurons[o].weights)):
    
                    # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
                    pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
    
                    # Δw = α * ∂Eⱼ/∂wᵢ
                    self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
    
            # 4. 更新隐含层的权重系数
            for h in range(len(self.hidden_layer.neurons)):
                for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
    
                    # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
                    pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
    
                    # Δw = α * ∂Eⱼ/∂wᵢ
                    self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
    
        def calculate_total_error(self, training_sets):
            total_error = 0
            for t in range(len(training_sets)):
                training_inputs, training_outputs = training_sets[t]
                self.feed_forward(training_inputs)
                for o in range(len(training_outputs)):
                    total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
            return total_error
    
    class NeuronLayer:
        def __init__(self, num_neurons, bias):
    
            # 同一层的神经元共享一个截距项b
            self.bias = bias if bias else random.random()
    
            self.neurons = []
            for i in range(num_neurons):
                self.neurons.append(Neuron(self.bias))
    
        def inspect(self):
            print('Neurons:', len(self.neurons))
            for n in range(len(self.neurons)):
                print(' Neuron', n)
                for w in range(len(self.neurons[n].weights)):
                    print('  Weight:', self.neurons[n].weights[w])
                print('  Bias:', self.bias)
    
        def feed_forward(self, inputs):
            outputs = []
            for neuron in self.neurons:
                outputs.append(neuron.calculate_output(inputs))
            return outputs
    
        def get_outputs(self):
            outputs = []
            for neuron in self.neurons:
                outputs.append(neuron.output)
            return outputs
    
    class Neuron:
        def __init__(self, bias):
            self.bias = bias
            self.weights = []
    
        def calculate_output(self, inputs):
            self.inputs = inputs
            self.output = self.squash(self.calculate_total_net_input())
            return self.output
    
        def calculate_total_net_input(self):
            total = 0
            for i in range(len(self.inputs)):
                total += self.inputs[i] * self.weights[i]
            return total + self.bias
    
        # 激活函数sigmoid
        def squash(self, total_net_input):
            return 1 / (1 + math.exp(-total_net_input))
    
    
        def calculate_pd_error_wrt_total_net_input(self, target_output):
            return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
    
        # 每一个神经元的误差是由平方差公式计算的
        def calculate_error(self, target_output):
            return 0.5 * (target_output - self.output) ** 2
    
        
        def calculate_pd_error_wrt_output(self, target_output):
            return -(target_output - self.output)
    
        
        def calculate_pd_total_net_input_wrt_input(self):
            return self.output * (1 - self.output)
    
    
        def calculate_pd_total_net_input_wrt_weight(self, index):
            return self.inputs[index]
    
    
    # 文中的例子:
    
    nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
    for i in range(10000):
        nn.train([0.05, 0.1], [0.01, 0.09])
        print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
    
    
    #另外一个例子,可以把上面的例子注释掉再运行一下:
    
    # training_sets = [
    #     [[0, 0], [0]],
    #     [[0, 1], [1]],
    #     [[1, 0], [1]],
    #     [[1, 1], [0]]
    # ]
    
    # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
    # for i in range(10000):
    #     training_inputs, training_outputs = random.choice(training_sets)
    #     nn.train(training_inputs, training_outputs)
    #     print(i, nn.calculate_total_error(training_sets))
    


    Reference

    transmission
    transmission_Back_Algorithm
    Transmission_Online_demonstration_of_neural_network_changes
    Transmission_How_The_Backpropagation_algorithm_works

  • 相关阅读:
    【STL】各容器成员对比表
    C/C++ 笔试、面试题目大汇总2
    运维
    Docker_基础运用
    IntelliJ_idea_Ultimate_2018.1_windows
    python_IED工具下载(pycharm)_windows版
    排序_归并排序_递归
    递归_汉诺塔问题
    递归_变位字
    递归_三角数字和阶乘
  • 原文地址:https://www.cnblogs.com/hugeng007/p/9535555.html
Copyright © 2020-2023  润新知