• Python图像处理丨基于OpenCV和像素处理的图像灰度化处理


    摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理。

    本文分享自华为云社区《[Python图像处理] 十四.基于OpenCV和像素处理的图像灰度化处理》,作者: eastmount 。

    本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理。基础性知识希望对您有所帮助。

    • 1.图像灰度化原理
    • 2.基于OpenCV的图像灰度化处理
    • 3.基于像素操作的图像灰度化处理

    一.图像灰度化原理

    像灰度化是将一幅彩色图像转换为灰度化图像的过程。彩色图像通常包括R、G、B三个分量,分别显示出红绿蓝等各种颜色,灰度化就是使彩色图像的R、G、B三个分量相等的过程。灰度图像中每个像素仅具有一种样本颜色,其灰度是位于黑色与白色之间的多级色彩深度,灰度值大的像素点比较亮,反之比较暗,像素值最大为255(表示白色),像素值最小为0(表示黑色)。

    假设某点的颜色由RGB(R,G,B)组成,常见灰度处理算法如表7.1所示:

    表7.1中Gray表示灰度处理之后的颜色,然后将原始RGB(R,G,B)颜色均匀地替换成新颜色RGB(Gray,Gray,Gray),从而将彩色图片转化为灰度图像。

    一种常见的方法是将RGB三个分量求和再取平均值,但更为准确的方法是设置不同的权重,将RGB分量按不同的比例进行灰度划分。比如人类的眼睛感官蓝色的敏感度最低,敏感最高的是绿色,因此将RGB按照0.299、0.587、0.144比例加权平均能得到较合理的灰度图像,如公式7.1所示。

    二.基于OpenCV的图像灰度化处理

    在日常生活中,我们看到的大多数彩色图像都是RGB类型,但是在图像处理过程中,常常需要用到灰度图像、二值图像、HSV、HSI等颜色,OpenCV提供了cvtColor()函数实现这些功能。其函数原型如下所示:

    dst = cv2.cvtColor(src, code[, dst[, dstCn]])

    • src表示输入图像,需要进行颜色空间变换的原图像
    • dst表示输出图像,其大小和深度与src一致
    • code表示转换的代码或标识
    • dstCn表示目标图像通道数,其值为0时,则有src和code决定

    该函数的作用是将一个图像从一个颜色空间转换到另一个颜色空间,其中,RGB是指Red、Green和Blue,一副图像由这三个通道(channel)构成;Gray表示只有灰度值一个通道;HSV包含Hue(色调)、Saturation(饱和度)和Value(亮度)三个通道。在OpenCV中,常见的颜色空间转换标识包括CV_BGR2BGRA、CV_RGB2GRAY、CV_GRAY2RGB、CV_BGR2HSV、CV_BGR2XYZ、CV_BGR2HLS等。

    下面是调用cvtColor()函数将图像进行灰度化处理的代码。

    #encoding:utf-8
    import cv2  
    import numpy as np  
    #读取原始图片
    src = cv2.imread('miao.png')
    #图像灰度化处理
    grayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
    #显示图像
    cv2.imshow("src", src)
    cv2.imshow("result", grayImage)
    #等待显示
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    输出结果如下图所示,左边是彩色的苗族服饰原图,右边是将彩色图像进行灰度化处理之后的灰度图。其中,灰度图将一个像素点的三个颜色变量设置为相当,R=G=B,此时该值称为灰度值。

    同样,可以调用 grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2HSV) 核心代码将彩色图像转换为HSV颜色空间,如下图所示。

    下面Image_Processing_07_02.py代码对比了九种常见的颜色空间,包括BGR、RGB、GRAY、HSV、YCrCb、HLS、XYZ、LAB和YUV,并循环显示处理后的图像。

    #encoding:utf-8
    import cv2  
    import numpy as np  
    import matplotlib.pyplot as plt
    #读取原始图像
    img_BGR = cv2.imread('miao.png')
    #BGR转换为RGB
    img_RGB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2RGB)
    #灰度化处理
    img_GRAY = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2GRAY)
    #BGR转HSV
    img_HSV = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2HSV)
    #BGR转YCrCb
    img_YCrCb = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2YCrCb)
    #BGR转HLS
    img_HLS = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2HLS)
    #BGR转XYZ
    img_XYZ = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2XYZ)
    #BGR转LAB
    img_LAB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2LAB)
    #BGR转YUV
    img_YUV = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2YUV)
    #调用matplotlib显示处理结果
    titles = ['BGR', 'RGB', 'GRAY', 'HSV', 'YCrCb', 'HLS', 'XYZ', 'LAB', 'YUV'] 
    images = [img_BGR, img_RGB, img_GRAY, img_HSV, img_YCrCb,
     img_HLS, img_XYZ, img_LAB, img_YUV] 
    for i in xrange(9): 
     plt.subplot(3, 3, i+1), plt.imshow(images[i], 'gray') 
     plt.title(titles[i]) 
     plt.xticks([]),plt.yticks([]) 
    plt.show()

    其运行结果如图所示:

    三.基于像素操作的图像灰度化处理

    前面讲述了调用OpenCV中cvtColor()函数实现图像灰度化的处理,接下来讲解基于像素操作的图像灰度化处理方法,主要是最大值灰度处理、平均灰度处理和加权平均灰度处理方法。

    1.最大值灰度处理方法

    该方法的灰度值等于彩色图像R、G、B三个分量中的最大值,公式如下:

    其方法灰度化处理后的灰度图亮度很高,实现代码如下。

    #encoding:utf-8
    import cv2  
    import numpy as np  
    import matplotlib.pyplot as plt
    #读取原始图像
    img = cv2.imread('miao.png')
    #获取图像高度和宽度
    height = img.shape[0]
    width = img.shape[1]
    #创建一幅图像
    grayimg = np.zeros((height, width, 3), np.uint8)
    #图像最大值灰度处理
    for i in range(height):
     for j in range(width):
     #获取图像R G B最大值
            gray = max(img[i,j][0], img[i,j][1], img[i,j][2])
     #灰度图像素赋值 gray=max(R,G,B)
     grayimg[i,j] = np.uint8(gray)
    #显示图像
    cv2.imshow("src", img)
    cv2.imshow("gray", grayimg)
    #等待显示
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    其输出结果如下图所示,其处理效果的灰度偏亮。

    2.平均灰度处理方法

    该方法的灰度值等于彩色图像R、G、B三个分量灰度值的求和平均值,其计算公式如下所示:

    平均灰度处理方法实现代码如下所示:

    #encoding:utf-8
    import cv2  
    import numpy as np  
    import matplotlib.pyplot as plt
    #读取原始图像
    img = cv2.imread('miao.png')
    #获取图像高度和宽度
    height = img.shape[0]
    width = img.shape[1]
    #创建一幅图像
    grayimg = np.zeros((height, width, 3), np.uint8)
    print grayimg
    #图像平均灰度处理方法
    for i in range(height):
     for j in range(width):
     #灰度值为RGB三个分量的平均值
            gray = (int(img[i,j][0]) + int(img[i,j][1]) + int(img[i,j][2])) / 3
     grayimg[i,j] = np.uint8(gray)
    #显示图像
    cv2.imshow("src", img)
    cv2.imshow("gray", grayimg)
    #等待显示
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    其输出结果如下图所示:

    3.加权平均灰度处理方法

    该方法根据色彩重要性,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,按下式对RGB三分量进行加权平均能得到较合理的灰度图像。

    加权平均灰度处理方法实现代码如下所示:

    #encoding:utf-8
    import cv2  
    import numpy as np  
    import matplotlib.pyplot as plt
    #读取原始图像
    img = cv2.imread('miao.png')
    #获取图像高度和宽度
    height = img.shape[0]
    width = img.shape[1]
    #创建一幅图像
    grayimg = np.zeros((height, width, 3), np.uint8)
    print grayimg
    #图像平均灰度处理方法
    for i in range(height):
     for j in range(width):
     #灰度加权平均法
            gray = 0.30 * img[i,j][0] + 0.59 * img[i,j][1] + 0.11 * img[i,j][2]
     grayimg[i,j] = np.uint8(gray)
    #显示图像
    cv2.imshow("src", img)
    cv2.imshow("gray", grayimg)
    #等待显示
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    其输出结果如下图所示:

    参考文献:

    该系列在github所有源代码:

     

    点击关注,第一时间了解华为云新鲜技术~

  • 相关阅读:
    trailRenderer
    通过sysobjects快速查找SQLServer中是否有某个表、视图、存储过程等对象实操
    浅谈信息系统(IT)项目管理-序幕
    使用open xml 判断sharepoint文档是否损坏
    Sharepoint the file is locked for use domainuser edit.文件被锁定,解锁方式
    sharepoint 列表库指定序号规则
    Biztalk 宏
    Biztalk 在流程中定义将消息保存为文件的文件名
    Biztalk 2013 新特性简介(英)
    devexpress gridview,selectedrowchanged
  • 原文地址:https://www.cnblogs.com/huaweiyun/p/16601197.html
Copyright © 2020-2023  润新知