• 基于共享内存和多重哈希实现分布式缓存系统


    写在前面:
    前三篇文字<<基于MQTT协议谈谈物联网开发-华佗写代码>>,<<基于MQTT协议实现Broker-华佗写代码>>,<<基于WebSocket实现Broker-华佗写代码>>主要叙述了MQTT协议的编解码以及基于MQTT协议的一些常见应用场景,并以一个简单的消息推送系统作为例子具体阐述了Mqtt Broker部分的实现,具体包括通过Mqtt,以及Mqtt Over WebSocket的方式打通各个端的数据通信,本篇文字继续以消息推送系统作为例子,阐述其状态系统的实现,具体的消息推送系统架构草图,需要参考回看第一篇文字,不再赘述.

    1.缓存技术:

    常见缓存技术主要有redis,memcached等,甚至也可使用mongodb或者mq,leveldb或者rocksdb等作为缓存,不同技术都有其优缺点,以redis为例,其可以通过代理和集群,实现分布式缓存系统,可以根据业务需要选择是否持久化,支持多种数据结构以及事务,但其服务器内存会是瓶颈,以及在处理一些复杂数据结构时,比如缓存用户登录状态,包括用户的Appid,设备token,是否切换为后台等等,这就可能需要不停地序列化和反序列化,比如redis的hash和sortedset结构等.再比如查找时,以sortedset为例,其底层是基于跳跃表来实现的,查找时间复杂度O(lgn),存储的数据越多,平均查询时间也会越长.所以,需要根据自身业务需求来选用合适技术,作为例子,这里基于共享内存和多重哈希来实现这样一个分布式缓存系统.

    2.状态系统具体实现:

    2.1状态系统架构草图:

    2.2状态系统实现细节说明:

    (1)整体架构主要包括负载均衡器,服务发现,MQ队列,缓存集群主从节点,DB;

    (2)不同集群节点跨机房或者跨IDC部署,MQ队列用于不同集群之间写数据同步;

    (3)每个集群节点包括一主多从节点,图示以一主一从为例示意,主和从节点都包括gm模块形成链表结构进行数据同步,具体可参考RabbitMQ镜像队列相关原理;

    (4)主从节点都包括shm模块,即共享内存模块,用于存储状态数据;

    (5)基于哈希结构存储数据,以达O(1)时间复杂度,通过多重哈希和最老节点覆盖写机制,解决哈希冲突;

    (6)用户登录存储状态数据,登出删除状态数据,每个用户状态都同时存储其存取时间戳,用于过期淘汰或者扩容时做相关判断;

    (7)以用户的Appid,Token等为例进行数据缓存;

    (8)DB根据业务需要决定是否分库分表;

    (9)其他...

    2.3状态系统代码实现(shm模块,跟之前几篇文字基于golang编写不同,这里基于C/C++编写):

    2.3.1定义用户状态数据结构体,以及哈希结构体头部,如下:

    const std::string GROCACHE_SHMFILE= "/shm/HashTableShmGroCache";
    
    //存储的用户数量,作为例子,这里设置为100,实际应用需要根据自身应用的用户数量合理设置
    const uint32_t GROCACHE_HASHNODE_CNT = 100;
    //计算每个用户状态节点占用的字节数: 4+8+4+4+4+4+4+4+4+4+32 const uint32_t GROCACHE_HASHNODE_SIZE = 76;
    const uint32_t GROCACHE_MAXROW_CNT = 4;
    //定义用户状态数据结构体
    #pragma pack (1) struct GroCacheNode { uint32_t hashKey; //计算哈希值 uint64_t tinyid; uint32_t appid; uint32_t settoken; uint32_t background; uint32_t sdkappid; uint32_t busiid; uint32_t unreadcnt; uint32_t accessTime; //数据存取时间 uint32_t tokenlen; uint8_t token[0]; };
    //定义哈希结构体头部
    #pragma pack (1) struct GroCacheHeader { uint32_t hashMemSize; // hashMemSize uint32_t hashNodeSize; // size of each hash node uint32_t hashNodeCnt; // num of all hash node uint32_t rowCnt; // row`s num uint32_t rowsNodeCnt[GROCACHE_MAXROW_CNT]; // node num of each row's uint32_t rowsStartNode[GROCACHE_MAXROW_CNT];// each row's starting node index uint32_t maxUsedRow; // max row index (start at 0) in use uint32_t usedCnt; };

    2.3.2根据预估用户数量开辟共享内存大小,并计算多重哈希每一级存储的节点数量比例,第一级哈希数组会存储将近70%的数据节点:

    //开辟并初始化共享内存,保存共享内存元数据
    bool
    MultiHashTable::initGC() { bool iRet = true; do { void* pShm = NULL; string shmFileName = GROCACHE_SHMFILE;
       //计算需要分配的共享内存大小,以字节为单位
    uint32_t hashMemSize = sizeof(GroCacheHeader) + (GROCACHE_HASHNODE_CNT * GROCACHE_HASHNODE_SIZE); bool exist = false;
         //真正申请开辟共享内存
    if(false == ShareMemory::Instance()->create(&pShm, shmFileName, hashMemSize, exist)) { iRet = false; break; } _grocacheHeader = (GroCacheHeader*)pShm; ...
      
    if(false == exist) { printf("share memory first create, hashtable need initial "); memset(_grocacheHeader, 0, sizeof(*_grocacheHeader)); _grocacheHeader->hashMemSize = hashMemSize; _grocacheHeader->hashNodeSize = GROCACHE_HASHNODE_SIZE; _grocacheHeader->rowCnt = GROCACHE_MAXROW_CNT;
           //通过CalcNodeCntForEachRow函数计算每一级哈希存储的节点数量,以及每一级哈希的起始索引位置 _grocacheHeader
    ->hashNodeCnt = CalcNodeCntForEachRow(GROCACHE_MAXROW_CNT, GROCACHE_HASHNODE_CNT, _grocacheHeader->rowsNodeCnt, _grocacheHeader->rowsStartNode); _grocacheHeader->maxUsedRow = 0; _grocacheHeader->usedCnt = 0; } //header+ht _grocacheHt = _grocacheHeader + 1; printf("_grocacheHeader hashMemSize:%u,hashNodeSize:%u,hashNodeCnt:%u,maxUsedRow:%u ", _grocacheHeader->hashMemSize,_grocacheHeader->hashNodeSize,_grocacheHeader->hashNodeCnt,_grocacheHeader->maxUsedRow); }while(false); return iRet; }

    2.3.3开辟共享内存,不同系统共享内存大小有限制,根据需要决定是否修改相关系统配置:

    bool ShareMemory::create(void** pShm, const std::string& shmFileName, const uint32_t& shmSize, bool& exist, bool reset)
    {
        exist = false;
        printf("create shmFileName:%s, shmSize:%u
    ", shmFileName.c_str(), shmSize);
        bool iRet = false;
        do
        {
            uint32_t shmKey = 0;
            if(false == getShmKey(shmFileName, shmKey))
            {
                printf("create getShmKey failed,shmFileName:%s
    ", shmFileName.c_str());
                break;
            }
            int shmFlag = 0666 | IPC_CREAT;
            int shmId = shmget(shmKey, 0, 0);
            if(-1 == shmId)
            {
                //no existed shm, need to create a new one
                printf("create a new share memory shmSize:%d
    ",shmSize);
                shmId = shmget(shmKey, shmSize, shmFlag);
                if(-1 == shmId)
                {
                    printf("create shmget failed errno=%d , errmsg=%s
    ", errno, strerror(errno));
                    break;
                }
            }
            ...
         if(reset) { memset(*pShm, 0, shmSize); exist = false; } iRet = true; }while(false); return iRet; }

    3.测试例子:

    #include <stdio.h>
    #include "MultiHashTable.h"
    using namespace std;
    
    int main() {
       //初始化用户状态节点 GroCacheNode gcSetNode; gcSetNode.appid
    = 666; gcSetNode.settoken = 1; gcSetNode.background = 1; gcSetNode.sdkappid = 999; gcSetNode.busiid = 9999; gcSetNode.unreadcnt = 0; string token = "user_device_token";   
      //模拟用户登录,存储用户状态数据 uint64_t uin
    = 888888888; uint32_t hashKey = 99; MultiHashTable::instance()->SetGroCache(hashKey, uin, gcSetNode, token);
    //修改用户推送消息未读计数
    bool iRet = false; uint32_t unreadcnt = 99; iRet = MultiHashTable::instance()->SetGroCacheUnReadCnt(hashKey, uin, unreadcnt); printf("[main]SetGroCacheUnReadCnt iRet:%d ", iRet);
       //读取用户推送消息未读计数 uint32_t getunreadcnt
    = 0; iRet = MultiHashTable::instance()->GetGroCacheUnReadCnt(hashKey, uin, getunreadcnt); printf("[main]GetGroCacheUnReadCnt iRet:%d, getunreadcnt:%d ", iRet, getunreadcnt); return 0; }

    4.运行测试结果,如下图所示,表明创建了共享内存文件,并计算了每一级哈希的节点数量,最后插入一条用户状态数据,并存取相关未读计数值:

    出于篇幅考虑,上述使用到的具体一些函数,如MaxPrime,CalcNodeCntForEachRow等,其具体实现就不一一列举出来了,也有一些成员变量,用到了也不一一具体注释了,主要通过架构图和具体代码关键路径叙述实现的一些细节,阐明主要设计思路以及解决问题的主要矛盾,如有错误,恳请指出,转载也请注明出处!!!

    未完待续...

    参考文字: RabbitMQ

  • 相关阅读:
    UML总结4---UML九种图关系说明
    TCP/IP学习笔记__mbuf
    操作系统内存管理之 内部碎片vs外部碎片
    校园招聘面试-操作系统知识总结 分看点三
    操作系统常见面试题总结 分看点二
    操作系统之面试常考 分看点一
    操作系统基础知识总结(二)
    操作系统基础知识总结(一)
    Java HashMap的扩容
    linux查看端口被占用情况
  • 原文地址:https://www.cnblogs.com/huatuo/p/9334510.html
Copyright © 2020-2023  润新知