• 使用blas做矩阵乘法


     
    #define min(x,y) (((x) < (y)) ? (x) : (y))
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <cublas_v2.h>
    #include <iostream>
    #include <vector>
    //extern "C"
    //{
       #include <cblas.h>
    //}
    
    using namespace std;
    int main()
    {
    
        const enum CBLAS_ORDER Order=CblasRowMajor;
        const enum CBLAS_TRANSPOSE TransA=CblasNoTrans;
        const enum CBLAS_TRANSPOSE TransB=CblasNoTrans;
        const int M=4;//A的行数,C的行数
        const int N=2;//B的列数,C的列数
        const int K=3;//A的列数,B的行数
        const float alpha=1;
        const float beta=0;
        const int lda=K;//A的列
        const int ldb=N;//B的列
        const int ldc=N;//C的列
        const float A[M*K]={1,2,3,4,5,6,7,8,9,8,7,6};
        const float B[K*N]={5,4,3,2,1,0};
        float C[M*N];
       
        cblas_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
         
        for(int i=0;i<M;i++)
        {
           for(int j=0;j<N;j++)
           {
               cout<<C[i*N+j]<<"
    ";
           }
           cout<<endl;
        }
       
        return EXIT_SUCCESS;
    
     
    }

    g++ testblas.c++ -lopenblas  -o testout

    g++ testblas.c++ -lopenblas_piledriverp-r0.2.9 -o testout   本地编译openblas版本

    注意library放在引用library的函数的后面

    cblas_sgemm
    
    Multiplies two matrices (single-precision).
    
    void cblas_sgemm (
    const enum CBLAS_ORDER Order,  // Specifies row-major (C) or column-major (Fortran) data ordering.
    //typedef enum CBLAS_ORDER     {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER;
    
    const enum CBLAS_TRANSPOSE TransA,//Specifies whether to transpose matrix A.
    const enum CBLAS_TRANSPOSE TransB,
    const int M,   //Number of rows in matrices A and C.
    const int N,//Number of rows in matrices A and C.
    const int K,  //Number of columns in matrix A; number of rows in matrix B
    const float alpha, //Scaling factor for the product of matrices A and B
    const float *A, 
    const int lda, //The size of the first dimention of matrix A; if you are passing a matrix A[m][n], the value should be m.  stride

    lda, ldb and ldc (the strides) are not relevant to my problem after all, but here's an explanation of them : 

    The elements of a matrix (i.e a 2D array) are stored contiguously in memory. However, they may be stored in either column-major or row-major fashion. The stride represents the distance in memory between elements in adjacent rows (if row-major) or in adjacent columns (if column-major). This means that the stride is usually equal to the number of rows/columns in the matrix.

    Matrix A =
    [1 2 3]
    [4 5 6]
    Row-major stores values as {1,2,3,4,5,6}
    Stride here is 3

    Col-major stores values as {1, 4, 2, 5, 3, 6}
    Stride here is 2


    Matrix B =
    [1 2 3]
    [4 5 6]
    [7 8 9]

    Col-major storage is {1, 4, 7, 2, 5, 8, 3, 6, 9}
    Stride here is 3


    Read more: http://www.physicsforums.com 
    const float *B, const int ldb, //The size of the first dimention of matrix B; if you are passing a matrix B[m][n], the value should be m. const float beta, //Scaling factor for matrix C. float *C, const int ldc //The size of the first dimention of matrix C; if you are passing a matrix C[m][n], the value should be m. ); Thus, it calculates either C←αAB + βC or C←αBA + βC with optional use of transposed forms of A, B, or both.
    
    
    
    
    typedef enum CBLAS_ORDER     {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER;
    typedef enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113, CblasConjNoTrans=114} CBLAS_TRANSPOSE;

    $C=A*B$

    $C^T=(A*B)^T=B^T*A^T$  把A和B的顺序颠倒,可以直接得到转制矩阵乘法的结果,不用作其他变换,(结果C也是转制)。

     Y←αAX + βY

    cblas_sgemv
    Multiplies a matrix by a vector (single precision).
    void cblas_sgemv (
    const enum CBLAS_ORDER Order,
    const enum CBLAS_TRANSPOSE TransA,
    const int M,
    const int N,
    const float alpha,
    const float *A,
    const int lda,
    const float *X,
    const int incX,
    const float beta,
    float *Y,
    const int incY
    );

    STL版本

    cblas_daxpy
    Computes a constant times a vector plus a vector (double-precision).  

    On return, the contents of vector Y are replaced with the result. The value computed is (alpha * X[i]) +
    Y[i].

    #include <OpenBlas/cblas.h>
    #include <OpenBlas/common.h>
    #include <iostream>
    #include <vector>
    
    int main()
    {
        blasint n = 10;
        blasint in_x =1;
        blasint in_y =1;
    
        std::vector<double> x(n);
        std::vector<double> y(n);
    
        double alpha = 10;
    
        std::fill(x.begin(),x.end(),1.0);
        std::fill(y.begin(),y.end(),2.0);
    
        cblas_daxpy( n, alpha, &x[0], in_x, &y[0], in_y);
    
        //Print y 
        for(int j=0;j<n;j++)
            std::cout << y[j] << "	";
    
        std::cout << std::endl;
    }

    cublas


    cublasStatus_t
    cublasCreate(cublasHandle_t *handle)

    
    

    Return Value Meaning
    CUBLAS_STATUS_SUCCESS the initialization succeeded
    CUBLAS_STATUS_NOT_INITIALIZED the CUDATM Runtime initialization failed
    CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated

    cublasStatus_t
    cublasDestroy(cublasHandle_t handle)

    Return Value Meaning
    CUBLAS_STATUS_SUCCESS the shut down succeeded
    CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized



    cublasStatus_t cublasSgemm(cublasHandle_t handle, // 唯一的不同:
    handle to the cuBLAS library context.
    cublasOperation_t transa,
    cublasOperation_t transb
    int m,
    int n,
    int k, const float *alpha, const float*A,
    int lda, const float*B,
    int ldb, const float*beta, float*C,
    int ldc
    )
    void cblas_sgemm (
    const enum CBLAS_ORDER Order,  // Specifies row-major (C) or column-major (Fortran) data ordering.
    //typedef enum CBLAS_ORDER     {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER;
    
    const enum CBLAS_TRANSPOSE TransA,//Specifies whether to transpose matrix A.
    const enum CBLAS_TRANSPOSE TransB,
    const int M,   //Number of rows in matrices A and C.
    const int N,//Number of rows in matrices A and C.
    const int K,  //Number of columns in matrix A; number of rows in matrix B
    const float alpha, //Scaling factor for the product of matrices A and B
    const float *A, 
    const int lda, //The size of the first dimention of matrix A; if you are passing a matrix A[m][n], the value should be m.
    const float *B,  
    const int ldb,  //The size of the first dimention of matrix B; if you are passing a matrix B[m][n], the value should be m.
    const float beta,  //Scaling factor for matrix C.
    float *C,
    const int ldc    //The size of the first dimention of matrix C; if you are passing a matrix C[m][n], the value should be m.
    );
  • 相关阅读:
    【BZOJ4318】OSU! 期望DP
    【BZOJ2956】模积和 分块
    【BZOJ4443】[Scoi2015]小凸玩矩阵 二分+二分图最大匹配
    【BZOJ2253】[2010 Beijing wc]纸箱堆叠 cdq分治
    【BZOJ3555】[Ctsc2014]企鹅QQ hash
    【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
    【BZOJ2287】【POJ Challenge】消失之物 背包动规
    【BZOJ4517】[Sdoi2016]排列计数 组合数+错排
    【BZOJ4551】[Tjoi2016&Heoi2016]树 并查集
    【BZOJ2783】[JLOI2012]树 DFS+栈+队列
  • 原文地址:https://www.cnblogs.com/huashiyiqike/p/3871927.html
Copyright © 2020-2023  润新知