问题描述:(具体见http://acm.hdu.edu.cn/showproblem.php?pid=1081) 给定一个n*n(0<n<=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。 Example: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 其中左上角的子矩阵: 9 2 -4 1 -1 8 此子矩阵的值为9+2+(-4)+1+(-1)+8=15。 我们首先想到的方法就是穷举一个矩阵的所有子矩阵,然而一个n*n的矩阵的子矩阵的个数当n比较大时时一个很大的数字 O(n^2*n^2),显然此方法不可行。 怎么使得问题的复杂度降低呢?对了,相信大家应该知道了,用动态规划。对于此题,怎么使用动态规划呢? 让我们先来看另外的一个问题(最大子段和问题): 给定一个长度为n的一维数组a,请找出此数组的一个子数组,使得此子数组的和sum=a[i]+a[i+1]+……+a[j]最大,其中i>=0,i<n,j>=i,j<n,例如 31 -41 59 26 -53 58 97 -93 -23 84 子矩阵59+26-53+58+97=187为所求的最大子数组。 第一种方法-直接穷举法: maxsofar=0; for i = 0 to n { for j = i to n { sum=0; for k=i to j sum+=a[k] if (maxsofar>sum) maxsofar=sum; } } 第二种方法-带记忆的递推法: cumarr[0]=a[0] for i=1 to n //首先生成一些部分和 { cumarr[i]=cumarr[i-1]+a[i]; } maxsofar=0 for i=0 to n { for j=i to n //下面通过已有的和递推 { sum=cumarr[j]-cumarr[i-1] if(sum>maxsofar) maxsofar=sum } } 显然第二种方法比第一种方法有所改进,时间复杂度为O(n*n)。 下面我们来分析一下最大子段和的子结构,令b[j]表示从a[0]~a[j]的最大子段和,b[j]的当前值只有两种情况,(1) 最大子段一直连续到a[j] (2) 以a[j]为起点的子段,不知有没有读者注意到还有一种情况,那就是最大字段没有包含a[j],如果没有包含a[j]的话,那么在算b[j]之前的时候我们已经算出来了,注意我们只是算到位置为j的地方,所以最大子断在a[j]后面的情况我们可以暂时不考虑。 由此我们得出b[j]的状态转移方程为:b[j]=max{b[j-1]+a[j],a[j]}, 所求的最大子断和为max{b[j],0<=j<n}。进一步我们可以将b[]数组用一个变量代替。 得出的算法如下: int maxSubArray(int n,int a[]) { int b=0,sum=-10000000; for(int i=0;i<n;i++) { if(b>0) b+=a[i]; else b=a[i]; if(b>sum) sum=b; } return sum; } 这就是第三种方法-动态规划。 现在回到我们的最初的最大子矩阵的问题,这个问题与上面所提到的最大子断有什么联系呢? 假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始): | a11 …… a1i ……a1j ……a1n | | a21 …… a2i ……a2j ……a2n | | . . . . . . . | | . . . . . . . | | ar1 …… ari ……arj ……arn | | . . . . . . . | | . . . . . . . | | ak1 …… aki ……akj ……akn | | . . . . . . . | | an1 …… ani ……anj ……ann | 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下: (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn) 由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。 [cpp] view plaincopyprint? #include<iostream> using namespace std; int dp[102][102]; int maxsub(int n,int a[]) { int i,sum=0,b=0; for(i=1;i<=n;i++) { if(b>0)b+=a[i]; else b=a[i]; if(b>sum)sum=b; } return sum; } int main() { int b[102]; int n,i,k,j,sum,maxsum; //freopen("in.txt","r",stdin); while(scanf("%d",&n)!=EOF) { for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { scanf("%d",&dp[i][j]); } } maxsum=0; for(i=1;i<=n;i++) { memset(b,0,sizeof(b)); for(j=i;j<=n;j++) { for(k=1;k<=n;k++) { b[k]+=dp[j][k]; } sum=maxsub(n,b); if(sum>maxsum)maxsum=sum; } } printf("%d/n",maxsum); } return 0; }