本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价。
波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取。
本小节直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。
实现简单线性回归的具体做法
- 导入需要的所有软件包:
- 在神经网络中,所有的输入都线性增加。为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据:
- 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其分解为 X_train 和 Y_train。可以对数据进行归一化处理:
- 为训练数据声明 TensorFlow 占位符:
- 创建 TensorFlow 的权重和偏置变量且初始值为零:
- 定义用于预测的线性回归模型:
- 定义损失函数:
- 选择梯度下降优化器:
- 声明初始化操作符:
- 现在,开始计算图,训练 100 次:
- 查看结果: