1. 集成学习(Ensemble Learning)原理
2. 集成学习(Ensemble Learning)Bagging
3. 集成学习(Ensemble Learning)随机森林(Random Forest)
4. 集成学习(Ensemble Learning)Adaboost
5. 集成学习(Ensemble Learning)GBDT
6. 集成学习(Ensemble Learning)算法比较
7. 集成学习(Ensemble Learning)Stacking
1. 前言
如果读了我之前的几篇集成学习的博文,相信读者们已经都对集成学习大部分知识很有了详细的学习。今天我们再来一个提升,就是我们的集大成者GBDT。GBDT在我们的Kaggle的比赛中基本获得了霸主地位,大部分的问题GBDT都能获得异常好的成绩。
2. GBDT原理
GBDT的中文名叫梯度提升树,GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。
在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是(f_{t-1}(x)), 损失函数是(L(y,f_{t-1}(x))),我们本轮迭代的目标是找到一个CART回归树模型的弱学习器(h_t(x)),让本轮的损失函数(L(y,f_t(x)=L(y,f_{t-1}(x)+h_t(x)))最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。即梯度提升树是用CART树去拟合前一个弱模型的损失函数的残差,使得本轮的损失更小。
3. 提升树
回归问题提升树的前向分步算法:
假设第(m)个模型是(f_m(x)),则有以下公式
有了模型函数后,我们就得到了损失函数:
其中的(T(x, heta))需要用CART树去拟合,而(r_{m-1})是上一个学习器的损失的残差。
我们举个例子,假设损失函数是平方损失函数:
则第(m)个模型的损失函数
4. 梯度提升树
前面的提升树利用加法模型和前向算法进行,当损失函数是平方损失或者指数损失的时候,很好推算,但是对于一般的损失函数,就比较难处理。这时候我们可以利用最速下降法来近似,关键是利用了损失函数的负梯度在当前模型的值:
输入:是训练集样本(T={(x_1,y_1),(x_2,y_2),...(x_N,y_N)}), 最大迭代次数(M), 损失函数(L)。
输出:强学习器(f_M(x))
- 初始化弱学习器
- 对迭代轮数(m=1,2,...M)有:
- 对样本(i=1,2,...,N),计算负梯度(r_{mi} approx -igg[frac{partial L(y_i, f(x_i))}{partial f(x_i)}igg]_{f(x) = f_{t-1};(x)})
- 利用((x_i,r_{mi})(i=1,2,..N)), 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为(Rmj,(j=1,2,...,J))。其中(J)为回归树t的叶子节点的个数。
- 对叶子区域(j=1,2,...,J)计算最佳拟合值(c_{mj} = arg min_{c}sumlimits_{x_i in R_{mj}} L(y_i,f_{m-1}(x_i) +c))
- 更新强学习器(f_{m}(x) = f_{m-1}(x) + sumlimits_{j=1}^{J}c_{mj}I(x in R_{mj}))
- 得到强学习器f(x)的表达式(f(x) = f_M(x) =f_0(x) + sumlimits_{m=1}^{M}sumlimits_{j=1}^{J}c_{mj}I(x in R_{tj}))
5. GBDT的正则化
- 和Adaboost类似的正则化项,即步长(learning rate)。
- 正则化的方式是通过子采样比例(subsample)。
- 对于弱学习器即CART回归树进行正则化剪枝。
6. 总结
GBDT也是需要正则化的过程,
最后总结下GBDT的优缺点。
GBDT主要的优点有:
- 可以灵活处理各种类型的数据,包括连续值和离散值。
- 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
- 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。
GBDT的主要缺点有:
- 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。