• UVA 10004 Bicoloring


    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=12&page=show_problem&problem=945

    Problem:In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

    Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

    • no node will have an edge to itself.
    • the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
    • the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

    Input:The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n< 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( $0 le a < n$).

    An input with n = 0 will mark the end of the input and is not to be processed.

    Output:You have to decide whether the input graph can be bicolored or not, and print it as shown below.

    解法:判断是否可以二分染色。直接dfs即可。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<vector>
     8 #define inf 0x7fffffff
     9 #define exp 1e-10
    10 #define PI 3.141592654
    11 using namespace std;
    12 const int maxn=222;
    13 int color[maxn];
    14 vector<int> G[maxn];
    15 int bi(int u)
    16 {
    17     int k=G[u].size();
    18     for (int i=0 ;i<k ;i++)
    19     {
    20         int v=G[u][i];
    21         if (!color[v])
    22         {
    23             color[v]=3-color[u];
    24             if (!bi(v)) return false;
    25         }
    26         if (color[v]==color[u]) return false;
    27     }
    28     return true;
    29 }
    30 int main()
    31 {
    32     int n,l;
    33     while (scanf("%d",&n)!=EOF)
    34     {
    35         if (!n) break;
    36         scanf("%d",&l);
    37         for (int i=0 ;i<=n ;i++) G[i].clear();
    38         memset(color,0,sizeof(color));
    39         int a,b;
    40         for (int i=0 ;i<l ;i++)
    41         {
    42             scanf("%d%d",&a,&b);
    43             G[a].push_back(b);
    44             G[b].push_back(a);
    45         }
    46         color[1]=1;
    47         int flag=bi(1);
    48         if (flag) cout<<"BICOLORABLE."<<endl;
    49         else cout<<"NOT BICOLORABLE."<<endl;
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    02 python网络爬虫《Http和Https协议》
    09 Django之orm中的锁和事务
    08 Django之自定义标签和过滤器
    07 Django之配置静态文件以及渲染图片
    06 Django之模型层---多表操作
    05 Django之模型层---单表操作
    Spring 中的 18 个注解,你会几个?
    一个 Java 对象到底有多大?
    面试题:InnoDB中一棵B+树能存多少行数据?
    Elasticsearch如何做到亿级数据查询毫秒级返回?
  • 原文地址:https://www.cnblogs.com/huangxf/p/3928404.html
Copyright © 2020-2023  润新知