• 机器学习十四


     

    第九次作业:主成分分析
    https://www.cnblogs.com/huangwenshuo/p/13080732.html

    由于当时在赶一个项目,和这个作业没有开直播,当我知道的时候已经过期了

     
     
     
     
     
     
     
     

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    from sklearn.datasets import load_digits
    digits = load_digits()
    

     结果截图:

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    import numpy as np
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.model_selection import train_test_split
    X_data = digits.data.astype(np.float32)
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("归一化后",X_data)
    # 转化为图片的格式(batch,height,width,channels)
    X=X_data.reshape(-1,8,8,1)
    # OneHotEncoder独热编码
    # y = digits.target.reshape(-1,1)
    y = digits.target.astype(np.float32).reshape(-1,1)  #将Y_data变为一列
    Y = OneHotEncoder().fit_transform(y).todense() #张量结构todense
    print("独热编码:",Y)
    # 切分数据集
    X_train,X_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
    print("X_data.shape:",X_data.shape)
    print("X.shape",X.shape)
    

    结果截图:

     

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。

    模型结构图:

    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten
    #3、建立模型
    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    # 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
    # 池化层1
    model.add(MaxPool2D(pool_size=(2, 2)))
    # 防止过拟合,随机丢掉连接
    model.add(Dropout(0.25))
    # 二层卷积
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
    # 池化层2
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 三层卷积
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
    # 四层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
    # 池化层3
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 平坦层
    model.add(Flatten())
    # 全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    # 激活函数softmax
    model.add(Dense(10, activation='softmax'))
    # 输出模型各层的参数状况
    print(model.summary())
    

     结果截图:

     

    4.模型训练

    import matplotlib.pyplot as plt
    # 画Train History图
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.title('Train History')
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    
    # 4、模型训练
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')
    

     结果截图:

     

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    #模型评价
    import pandas as pd
    import seaborn as sns
    # model.evaluate()
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    # pandas.crosstab
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    # 交叉矩阵
    # seaborn.heatmap
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
    # 转换成属dataframe
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
    plt.show()
    

     结果截图:

  • 相关阅读:
    Xcode编译WebDriverAgentRunner报错:The bundle identifier for IntegrationApp.app couldn’t be read.解决方案
    python+django更新表结构执行相关命令报错:No installed app with label 'interface_crud'解决方案
    python激活虚拟环境env报错:no such file or directory: env/Scripts/activate解决方案
    Django创建api_crud app时报错:file "manage.py", line 16 ) from exc ^ SyntaxError: invalid syntax解决方案
    Redis未授权访问漏洞复现
    逻辑漏洞小结之SRC篇
    Linux下清空用户登录记录和命令历史的方法
    linux下直接清空日志的方法
    Linux Hackers/Suspicious Account Detection
    linux查看所有用户信息
  • 原文地址:https://www.cnblogs.com/huangwenshuo/p/13080652.html
Copyright © 2020-2023  润新知