• 20200913 第 6 章 递归


    第 6 章 递归

    6.1 递归应用场景

    看个实际应用场景, 迷宫问题(回溯), 递归(Recursion)

    6.2 递归的概念

    简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。

    6.3 递归调用机制

    列举两个小案例,回顾一下递归调用机制

    1. 打印问题
    2. 阶乘问题
    3. 使用图解方式说明了递归的调用机制

    打印问题

    public class RecursionTest {
    
        public static void main(String[] args) {
            test(4);
    
            //int res = factorial(3);
            //System.out.println("res=" + res);
        }
    
        public static void test(int n) {
            if (n > 2) {
                test(n - 1);
            } 
            // !!!当有 else 时,结果不同
            //else {
            System.out.println("n=" + n);
            // }
        }
    }
    
    • 没有 else 时,结果为

      n=2
      n=3
      n=4
      
    • 有 else 时,结果为

      n=2
      

    阶乘问题

    public static int factorial(int n) {
    	if (n == 1) {
    		return 1;
    	} else {
    		return factorial(n - 1) * n; // 1 * 2 * 3
    	}
    }
    

    6.4 递归能解决什么样的问题

    递归用于解决什么样的问题

    1. 各种数学问题如: 8 皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题(google 编程大赛)
    2. 各种算法中也会使用到递归, 比如快排, 归并排序, 二分查找, 分治算法等
    3. 将用栈解决的问题 --> 递归代码比较简洁

    6.5 递归需要遵守的重要规则

    递归需要遵守的重要规则:

    1. 执行一个方法时, 就创建一个新的受保护的独立空间(栈空间)
    2. 方法的局部变量是独立的, 不会相互影响, 比如 n 变量
    3. 如果方法中使用的是引用类型变量(比如数组), 就会共享该引用类型的数据.
    4. 递归必须向退出递归的条件逼近, 否则就是无限递归,出现 StackOverflowError
    5. 当一个方法执行完毕, 或者遇到 return, 就会返回, 遵守谁调用, 就将结果返回给谁, 同时当方法执行完毕或者返回时, 该方法也就执行完毕

    6.6 递归-迷宫问题

    6.6.1 迷宫问题

    img

    从 (1,1) 开始,小球走到右下角 (6,5)

    6.6.2 代码实现

    public class MyMiGong {
    
        public static int count=0;
        public static void main(String[] args) {
            // 先创建一个二维数组,模拟迷宫
            // 地图
            int[][] map = initMap();
            // 输出地图
            System.out.println("地图的情况");
            printMap(map);
    
            //使用递归回溯给小球找路
            setWay(map, 1, 1);
    
            //输出新的地图, 小球走过,并标识过的递归
            System.out.println("小球走过,并标识过的 地图的情况");
            printMap(map);
    
            System.out.println("调用 setWay 方法次数为:"+count);
    
        }
    
    
        /**
         * 使用递归回溯来给小球找路
         * 说明
         * 1. map 表示地图
         * 2. i,j 表示从地图的哪个位置开始出发 (1,1)
         * 3. 如果小球能到 map[6][5] 位置,则说明通路找到.
         * 4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙  ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
         * 5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
         *
         * @param map
         * @param i
         * @param j
         * @return 如果找到通路,就返回true, 否则返回false
         */
        private static boolean setWay(int[][] map, int i, int j) {
            count++;
            if (map[6][5] == 2) {
                return true;
            } else {
                if (map[i][j] == 0) {
                    // 如果当前这个点还没有走过
                    // 先假定该点是可以走通
                    map[i][j] = 2;
                    // 按照策略 下->右->上->左  走
                    if (setWay(map, i + 1, j)) {
                        return true;
                    } else if (setWay(map, i, j + 1)) {
                        return true;
                    } else if (setWay(map, i - 1, j)) {
                        return true;
                    } else if (setWay(map, i, j - 1)) {
                        return true;
                    } else {
                        //说明该点是走不通,是死路
                        map[i][j] = 3;
                        return false;
                    }
                } else {
                    // 如果map[i][j] != 0 , 可能是 1, 2, 3
                    return false;
                }
            }
        }
    
        
        private static int[][] initMap() {
            int[][] map = new int[8][7];
            // 使用1 表示墙
            // 上下全部置为1
            for (int i = 0; i < 7; i++) {
                map[0][i] = 1;
                map[7][i] = 1;
            }
    
            // 左右全部置为1
            for (int i = 0; i < 8; i++) {
                map[i][0] = 1;
                map[i][6] = 1;
            }
    
            //设置挡板, 1 表示
            map[3][1] = 1;
            map[3][2] = 1;
            // map[1][2] = 1;
            // map[2][2] = 1;
    
    
            return map;
        }
    
        private static void printMap(int[][] map) {
            for (int i = 0; i < 8; i++) {
                for (int j = 0; j < 7; j++) {
                    System.out.print(map[i][j] + " ");
                }
                System.out.println();
            }
        }
    }
    

    6.6.3对迷宫问题的讨论

    1. 小球得到的路径, 和程序员设置的找路策略有关即: 找路的上下左右的顺序相关
    2. 再得到小球路径时, 可以先使用(下右上左), 再改成(上右下左), 看看路径是不是有变化
    3. 测试回溯现象
    4. 思考: 如何求出最短路径? 思路 --> 代码实现.

    6.7 递归-八皇后问题(回溯算法)

    6.7.1八皇后问题介绍

    八皇后问题, 是一个古老而著名的问题, 是回溯算法的典型案例。 该问题是国际西洋棋棋手马克斯· 贝瑟尔于 1848 年提出: 在 8×8 格的国际象棋上摆放八个皇后, 使其不能互相攻击, 即: 任意两个皇后都不能处于同一行、同一列或同一斜线上, 问有多少种摆法 (92)。

    img

    6.7.2八皇后问题算法思路分析

    1. 第一个皇后先放第一行第一列
    2. 第二个皇后放在第二行第一列、 然后判断是否 OK, 如果不 OK, 继续放在第二列、 第三列、 依次把所有列都放完, 找到一个合适
    3. 继续第三个皇后, 还是第一列、 第二列……直到第 8 个皇后也能放在一个不冲突的位置, 算是找到了一个正确解
    4. 当得到一个正确解时, 在栈回退到上一个栈时, 就会开始回溯, 即将第一个皇后, 放到第一列的所有正确解,全部得到.
    5. 然后回头继续第一个皇后放第二列, 后面继续循环执行 1,2,3,4 的步骤

    说明:

    理论上应该创建一个二维数组来表示棋盘, 但是实际上可以通过算法, 用一个一维数组即可解决问题.

    arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3}

    对应 arr 下标 表示第几行, 即第几个皇后, arr[i] = val , val 表示第 i+1 个皇后, 放在第 i+1 行的第 val+1 列

    public class MyQueen8 {
        //定义一个max表示共有多少个皇后
        int max = 8;
        //定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
        int[] array = new int[max];
        static int count = 0;
        static int judgeCount = 0;
    
        static int[] countArr = new int[8];
        static int x = 0;
    
        public static void main(String[] args) {
            //测试一把 , 8皇后是否正确
            MyQueen8 queue8 = new MyQueen8();
            queue8.check(0);
    
            System.out.printf("一共有%d解法
    ", count);
            System.out.printf("一共判断冲突的次数%d次
    ", judgeCount); // 1.5w
            System.out.println("当第一枚棋子在各个位置时的解法数:" + Arrays.toString(countArr));
        }
    
    
        //编写一个方法,放置第n个皇后
        //特别注意: check 是 每一次递归时,进入到check中都有  for(int i = 0; i < max; i++),因此会有回溯
        private void check(int n) {
            if (n == max) {  //n = 8 , 其实8个皇后就既然放好
                print();
                return;
            }
    
            //依次放入皇后,并判断是否冲突
            for (int i = 0; i < max; i++) {
                //先把当前这个皇后 n , 放到该行的第1列
                array[n] = i;
                //判断当放置第n个皇后到i列时,是否冲突
                if (judge(n)) { // 不冲突
                    //接着放n+1个皇后,即开始递归
                    check(n + 1); //
                }
                //如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
                if (n == 0) {
                    if (x == 0) {
                        countArr[x] = count;
                    } else {
                        countArr[x] = count - calc(countArr, x);
                    }
                    x++;
                }
            }
        }
    
        private int calc(int[] arr, int n) {
            if (n < 0) {
                return 0;
            } else {
                return arr[n] + calc(arr, n - 1);
            }
        }
    
        /**
         * 查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
         * 
         * @param n 表示第n个皇后
         * @return
         */
        private boolean judge(int n) {
            judgeCount++;
            for (int i = 0; i < n; i++) {
                // 说明
                //1. array[i] == array[n]  表示判断 第n个皇后是否和前面的n-1个皇后在同一列
                //2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
                //      n = 1  放置第 2列 1 n = 1 array[1] = 1
                //      Math.abs(1-0) == 1  Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
                //3. 判断是否在同一行, 没有必要,n 每次都在递增
                if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
                    return false;
                }
            }
            return true;
        }
    
        //写一个方法,可以将皇后摆放的位置输出
        private void print() {
            count++;
            for (int i = 0; i < array.length; i++) {
                System.out.print(array[i] + " ");
            }
            System.out.println();
        }
    }
    
  • 相关阅读:
    python学习笔记 day28 内置函数进阶实例
    python学习笔记 day28 面向对象的进阶
    python学习笔记 day27 内置方法
    python学习笔记 day27 反射(二)
    python学习笔记 day26 反射-----hasattr getattr delattr
    python学习笔记 day26 类方法classmethod 和 静态方法 staticmethod ---------都是面向对象的内置函数(装饰器)
    python学习笔记 day26 私有属性 和 property
    python学习笔记 day25 封装
    python学习笔记 day25 多态
    #Leetcode# 728. Self Dividing Numbers
  • 原文地址:https://www.cnblogs.com/huangwenjie/p/13660720.html
Copyright © 2020-2023  润新知