一、数仓搭建 - DWS 层
1.1 业务术语
1)用户
用户以设备为判断标准,在移动统计中,每个独立设备认为是一个独立用户。Android
系统根据 IMEI 号,IOS 系统根据 OpenUDID 来标识一个独立用户,每部手机一个用户
2)新增用户
首次联网使用应用的用户。如果一个用户首次打开某 APP,那这个用户定义为新增用
户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月
新增用户
3)活跃用户
打开应用的用户即为活跃用户,不考虑用户的使用情况。每天一台设备打开多次会被计
为一个活跃用户
4)周(月)活跃用户
某个自然周(月)内启动过应用的用户,该周(月)内的多次启动只记一个活跃用户
5)月活跃率
月活跃用户与截止到该月累计的用户总和之间的比例
6)沉默用户
用户仅在安装当天(次日)启动一次,后续时间无再启动行为。该指标可以反映新增用
户质量和用户与 APP 的匹配程度
7)版本分布
不同版本的周内各天新增用户数,活跃用户数和启动次数。利于判断 APP 各个版本之
间的优劣和用户行为习惯
8)本周回流用户
上周未启动过应用,本周启动了应用的用户
9)连续 n 周活跃用户
连续 n 周,每周至少启动一次
10)忠诚用户
连续活跃 5 周以上的用户
11)连续活跃用户
连续 2 周及以上活跃的用户
12)近期流失用户
连续 n(2<= n <= 4)周没有启动应用的用户。(第 n+1 周没有启动过)
13)留存用户
某段时间内的新增用户,经过一段时间后,仍然使用应用的被认作是留存用户;这部分
用户占当时新增用户的比例即是留存率
例如,5 月份新增用户 200,这 200 人在 6 月份启动过应用的有 100 人,7 月份启动过应用的有 80 人,8 月份启动过应用的有 50 人;则 5 月份新增用户一个月后的留存率是 50%,二个月后的留存率是 40%,三个月后的留存率是 25%
14)用户新鲜度
每天启动应用的新老用户比例,即新增用户数占活跃用户数的比例
15)单次使用时长
每次启动使用的时间长度
16)日使用时长
累计一天内的使用时间长度
17)启动次数计算标准
IOS 平台应用退到后台就算一次独立的启动;Android 平台我们规定,两次启动之间的间隔小于 30 秒,被计算一次启动。用户在使用过程中,若因收发短信或接电话等退出应用30 秒又再次返回应用中,那这两次行为应该是延续而非独立的,所以可以被算作一次使用行为,即一次启动。业内大多使用 30 秒这个标准,但用户还是可以自定义此时间间隔
1.2 系统函数
1.2.1 collect_set 函数
1)创建原数据表
drop table if exists stud; create table stud (name string, area string, course string, score int);
2)向原数据表中插入数据
insert into table stud values('zhang3','bj','math',88); insert into table stud values('li4','bj','math',99); insert into table stud values('wang5','sh','chinese',92); insert into table stud values('zhao6','sh','chinese',54); insert into table stud values('tian7','bj','chinese',91);
3)查询表中数据
select * from stud; stud.name stud.area stud.course stud.score zhang3 bj math 88 li4 bj math 99 wang5 sh chinese 92 zhao6 sh chinese 54 tian7 bj chinese 91
4)把同一分组的不同行的数据聚合成一个集合
select course, collect_set(area), avg(score) from stud group by course; chinese ["sh","bj"] 79.0 math ["bj"] 93.5
5) 用下标可以取某一个
select course, collect_set(area)[0], avg(score) from stud group by course; chinese sh 79.0 math bj 93.5
1.2.2 nvl 函数
1)基本语法
NVL(表达式 1,表达式 2)
如果表达式 1 为空值,NVL 返回值为表达式 2 的值,否则返回表达式 1 的值。 该函数的目的是把一个空值(null)转换成一个实际的值。其表达式的值可以是数字型、字符型和日期型。但是表达式 1 和表达式 2 的数据类型必须为同一个类型
1.2.3 日期处理函数
1)date_format 函数(根据格式整理日期)
hive (gmall)> select date_format('2020-03-10','yyyy-MM'); 2020-03
2)date_add 函数(加减日期)
hive (gmall)> select date_add('2020-03-10',-1); 2020-03-09 hive (gmall)> select date_add('2020-03-10',1); 2020-03-11
3)next_day 函数
(1)取当前天的下一个周一
hive (gmall)> select next_day('2020-03-12','MO'); 2020-03-16 说明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)
(2)取当前周的周一
hive (gmall)> select date_add(next_day('2020-03-12','MO'),-7); 2020-03-11
4)last_day 函数(求当月最后一天日期)
hive (gmall)> select last_day('2020-03-10'); 2020-03-31
1.3 DWS 层(用户行为)
1.3.1 每日设备行为
每日设备行为,主要按照 设备 id 统计
1)建表语句
drop table if exists dws_uv_detail_daycount; create external table dws_uv_detail_daycount ( `mid_id` string COMMENT '设备唯一标识', `user_id` string COMMENT '用户标识', `version_code` string COMMENT '程序版本号', `version_name` string COMMENT '程序版本名', `lang` string COMMENT '系统语言', `source` string COMMENT '渠道号', `os` string COMMENT '安卓系统版本', `area` string COMMENT '区域', `model` string COMMENT '手机型号', `brand` string COMMENT '手机品牌', `sdk_version` string COMMENT 'sdkVersion', `gmail` string COMMENT 'gmail', `height_width` string COMMENT '屏幕宽高', `app_time` string COMMENT '客户端日志产生时的时间', `network` string COMMENT '网络模式', `lng` string COMMENT '经度', `lat` string COMMENT '纬度', `login_count` bigint COMMENT '活跃次数' ) partitioned by(dt string) stored as parquet location '/warehouse/gmall/dws/dws_uv_detail_daycount';
2)数据装载
insert overwrite table dws_uv_detail_daycount partition(dt='2020-03-10') select mid_id, concat_ws('|', collect_set(user_id)) user_id, concat_ws('|', collect_set(version_code)) version_code, concat_ws('|', collect_set(version_name)) version_name, concat_ws('|', collect_set(lang))lang, concat_ws('|', collect_set(source)) source, concat_ws('|', collect_set(os)) os, concat_ws('|', collect_set(area)) area, concat_ws('|', collect_set(model)) model, concat_ws('|', collect_set(brand)) brand, concat_ws('|', collect_set(sdk_version)) sdk_version, concat_ws('|', collect_set(gmail)) gmail, concat_ws('|', collect_set(height_width)) height_width, concat_ws('|', collect_set(app_time)) app_time, concat_ws('|', collect_set(network)) network, concat_ws('|', collect_set(lng)) lng, concat_ws('|', collect_set(lat)) lat, count(*) login_count from dwd_start_log where dt='2020-03-10' group by mid_id;
3)查询加载结果
select * from dws_uv_detail_daycount where dt='2020-03-10';
1.4 DWS 层(业务)
DWS 层的宽表字段,是站在不同维度的视角去看事实表,重点关注事实表的度量值
1.4.1 每日会员行为
1)建表语句
drop table if exists dws_user_action_daycount; create external table dws_user_action_daycount ( user_id string comment '用户 id', login_count bigint comment '登录次数', cart_count bigint comment '加入购物车次数', cart_amount double comment '加入购物车金额', order_count bigint comment '下单次数', order_amount decimal(16,2) comment '下单金额', payment_count bigint comment '支付次数', payment_amount decimal(16,2) comment '支付金额' ) COMMENT '每日用户行为' PARTITIONED BY (`dt` string) stored as parquet location '/warehouse/gmall/dws/dws_user_action_daycount/' tblproperties ("parquet.compression"="lzo");
2)数据装载
with tmp_login as ( select user_id, count(*) login_count from dwd_start_log where dt='2020-03-10' and user_id is not null group by user_id ), tmp_cart as ( select user_id, count(*) cart_count, sum(cart_price*sku_num) cart_amount from dwd_fact_cart_info where dt='2020-03-10' and user_id is not null and date_format(create_time,'yyyy-MM-dd')='2020-03-10' group by user_id ), tmp_order as ( select user_id, count(*) order_count, sum(final_total_amount) order_amount from dwd_fact_order_info where dt='2020-03-10' group by user_id ) , tmp_payment as ( select user_id, count(*) payment_count, sum(payment_amount) payment_amount from dwd_fact_payment_info where dt='2020-03-10' group by user_id ) insert overwrite table dws_user_action_daycount partition(dt='2020-03-10') select user_actions.user_id, sum(user_actions.login_count), sum(user_actions.cart_count), sum(user_actions.cart_amount), sum(user_actions.order_count), sum(user_actions.order_amount), sum(user_actions.payment_count), sum(user_actions.payment_amount) from ( select user_id, login_count, 0 cart_count, 0 cart_amount, 0 order_count, 0 order_amount, 0 payment_count, 0 payment_amount from tmp_login union all select user_id, 0 login_count, cart_count, cart_amount, 0 order_count, 0 order_amount, 0 payment_count, 0 payment_amount from tmp_cart union all select user_id, 0 login_count, 0 cart_count, 0 cart_amount, order_count, order_amount, 0 payment_count, 0 payment_amount from tmp_order union all select user_id, 0 login_count, 0 cart_count, 0 cart_amount, 0 order_count, 0 order_amount, payment_count, payment_amount from tmp_payment ) user_actions group by user_id;
3)查询加载结果
select * from dws_user_action_daycount where dt=‘2020-03-10’;
1.4.2 每日商品行为
1)建表语句
drop table if exists dws_sku_action_daycount; create external table dws_sku_action_daycount ( sku_id string comment 'sku_id', order_count bigint comment '被下单次数', order_num bigint comment '被下单件数', order_amount decimal(16,2) comment '被下单金额', payment_count bigint comment '被支付次数', payment_num bigint comment '被支付件数', payment_amount decimal(16,2) comment '被支付金额', refund_count bigint comment '被退款次数', refund_num bigint comment '被退款件数', refund_amount decimal(16,2) comment '被退款金额', cart_count bigint comment '被加入购物车次数', cart_num bigint comment '被加入购物车件数', favor_count bigint comment '被收藏次数', appraise_good_count bigint comment '好评数', appraise_mid_count bigint comment '中评数', appraise_bad_count bigint comment '差评数', appraise_default_count bigint comment '默认评价数' ) COMMENT '每日商品行为' PARTITIONED BY (`dt` string) stored as parquet location '/warehouse/gmall/dws/dws_sku_action_daycount/' tblproperties ("parquet.compression"="lzo");
2)数据装载
注意:如果是 23 点 59 下单,支付日期跨天。需要从订单详情里面取出支付时间是今天,订单时间是昨天或者今天的订单
with tmp_order as ( select sku_id, count(*) order_count, sum(sku_num) order_num, sum(total_amount) order_amount from dwd_fact_order_detail where dt='2020-03-10' group by sku_id ), tmp_payment as ( select sku_id, count(*) payment_count, sum(sku_num) payment_num, sum(total_amount) payment_amount from dwd_fact_order_detail where dt='2020-03-10' and order_id in ( select id from dwd_fact_order_info where (dt='2020-03-10' or dt=date_add('2020-03-10',-1)) and date_format(payment_time,'yyyy-MM-dd')='2020-03-10' ) group by sku_id ), tmp_refund as ( select sku_id, count(*) refund_count, sum(refund_num) refund_num, sum(refund_amount) refund_amount from dwd_fact_order_refund_info where dt='2020-03-10' group by sku_id ), tmp_cart as ( select sku_id, count(*) cart_count, sum(sku_num) cart_num from dwd_fact_cart_info where dt='2020-03-10' and date_format(create_time,'yyyy-MM-dd')='2020-03-10' group by sku_id ), tmp_favor as ( select sku_id, count(*) favor_count from dwd_fact_favor_info where dt='2020-03-10' and date_format(create_time,'yyyy-MM-dd')='2020-03-10' group by sku_id ), tmp_appraise as ( select sku_id, sum(if(appraise='1201',1,0)) appraise_good_count, sum(if(appraise='1202',1,0)) appraise_mid_count, sum(if(appraise='1203',1,0)) appraise_bad_count, sum(if(appraise='1204',1,0)) appraise_default_count from dwd_fact_comment_info where dt='2020-03-10' group by sku_id ) insert overwrite table dws_sku_action_daycount partition(dt='2020-03-10') select sku_id, sum(order_count), sum(order_num), sum(order_amount), sum(payment_count), sum(payment_num), sum(payment_amount), sum(refund_count), sum(refund_num), sum(refund_amount), sum(cart_count), sum(cart_num), sum(favor_count), sum(appraise_good_count), sum(appraise_mid_count), sum(appraise_bad_count), sum(appraise_default_count) from ( select sku_id, order_count, order_num, order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_order union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, payment_count, payment_num, payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_payment union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, refund_count, refund_num, refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_refund union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, cart_count, cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_cart union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_favor union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, appraise_good_count, appraise_mid_count, appraise_bad_count, appraise_default_count from tmp_appraise )tmp group by sku_id;
3)查询加载结果
select * from dws_sku_action_daycount where dt='2020-03-10';
1.4.5 每日购买行为
1)建表语句
drop table if exists dws_sale_detail_daycount; create external table dws_sale_detail_daycount ( user_id string comment '用户 id', sku_id string comment '商品 id', user_gender string comment '用户性别', user_age string comment '用户年龄', user_level string comment '用户等级', order_price decimal(10,2) comment '商品价格', sku_name string comment '商品名称', sku_tm_id string comment '品牌 id', sku_category3_id string comment '商品三级品类 id', sku_category2_id string comment '商品二级品类 id', sku_category1_id string comment '商品一级品类 id', sku_category3_name string comment '商品三级品类名称', sku_category2_name string comment '商品二级品类名称', sku_category1_name string comment '商品一级品类名称', spu_id string comment '商品 spu', sku_num int comment '购买个数', order_count bigint comment '当日下单单数', order_amount decimal(16,2) comment '当日下单金额' ) COMMENT '每日购买行为' PARTITIONED BY (`dt` string) stored as parquet location '/warehouse/gmall/dws/dws_sale_detail_daycount/' tblproperties ("parquet.compression"="lzo");
2)数据装载
insert overwrite table dws_sale_detail_daycount partition(dt='2020-03-10') select op.user_id, op.sku_id, ui.gender, months_between('2020-03-10', ui.birthday)/12 age, ui.user_level, si.price, si.sku_name, si.tm_id, si.category3_id, si.category2_id, si.category1_id, si.category3_name, si.category2_name, si.category1_name, si.spu_id, op.sku_num, op.order_count, op.order_amount from ( select user_id, sku_id, sum(sku_num) sku_num, count(*) order_count, sum(total_amount) order_amount from dwd_fact_order_detail where dt='2020-03-10' group by user_id, sku_id )op join ( select * from dwd_dim_user_info_his where end_date='9999-99-99' )ui on op.user_id = ui.id join ( select * from dwd_dim_sku_info where dt='2020-03-10' )si on op.sku_id = si.id;
3)查询加载结果
select * from dws_sale_detail_daycount where dt='2020-03-10';
1.5 DWS 层数据导入脚本
1)vim dwd_to_dws.sh
在脚本中填写如下内容
#!/bin/bash APP=gmall hive=/opt/modules/hive/bin/hive # 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天 if [ -n "$1" ] ;then do_date=$1 else do_date=`date -d "-1 day" +%F` fi sql=" insert overwrite table ${APP}.dws_uv_detail_daycount partition(dt='$do_date') select mid_id, concat_ws('|', collect_set(user_id)) user_id, concat_ws('|', collect_set(version_code)) version_code, concat_ws('|', collect_set(version_name)) version_name, concat_ws('|', collect_set(lang))lang, concat_ws('|', collect_set(source)) source, concat_ws('|', collect_set(os)) os, concat_ws('|', collect_set(area)) area, concat_ws('|', collect_set(model)) model, concat_ws('|', collect_set(brand)) brand, concat_ws('|', collect_set(sdk_version)) sdk_version, concat_ws('|', collect_set(gmail)) gmail, concat_ws('|', collect_set(height_width)) height_width, concat_ws('|', collect_set(app_time)) app_time, concat_ws('|', collect_set(network)) network, concat_ws('|', collect_set(lng)) lng, concat_ws('|', collect_set(lat)) lat, count(*) login_count from ${APP}.dwd_start_log where dt='$do_date' group by mid_id; with tmp_login as ( select user_id, count(*) login_count from ${APP}.dwd_start_log where dt='$do_date' and user_id is not null group by user_id ), tmp_cart as ( select user_id, count(*) cart_count, sum(cart_price*sku_num) cart_amount from ${APP}.dwd_fact_cart_info where dt='$do_date' and user_id is not null and date_format(create_time,'yyyy-MM-dd')='$do_date' group by user_id ), tmp_order as ( select user_id, count(*) order_count, sum(final_total_amount) order_amount from ${APP}.dwd_fact_order_info where dt='$do_date' group by user_id ) , tmp_payment as ( select user_id, count(*) payment_count, sum(payment_amount) payment_amount from ${APP}.dwd_fact_payment_info where dt='$do_date' group by user_id ) insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date') select user_actions.user_id, sum(user_actions.login_count), sum(user_actions.cart_count), sum(user_actions.cart_amount), sum(user_actions.order_count), sum(user_actions.order_amount), sum(user_actions.payment_count), sum(user_actions.payment_amount) from ( select user_id, login_count, 0 cart_count, 0 cart_amount, 0 order_count, 0 order_amount, 0 payment_count, 0 payment_amount from tmp_login union all select user_id, 0 login_count, cart_count, cart_amount, 0 order_count, 0 order_amount, 0 payment_count, 0 payment_amount from tmp_cart union all select user_id, 0 login_count, 0 cart_count, 0 cart_amount, order_count, order_amount, 0 payment_count, 0 payment_amount from tmp_order union all select user_id, 0 login_count, 0 cart_count, 0 cart_amount, 0 order_count, 0 order_amount, payment_count, payment_amount from tmp_payment ) user_actions group by user_id; with tmp_order as ( select sku_id, count(*) order_count, sum(sku_num) order_num, sum(total_amount) order_amount from ${APP}.dwd_fact_order_detail where dt='$do_date' group by sku_id ), tmp_payment as ( select sku_id, count(*) payment_count, sum(sku_num) payment_num, sum(total_amount) payment_amount from ${APP}.dwd_fact_order_detail where dt='$do_date' and order_id in ( select id from ${APP}.dwd_fact_order_info where (dt='$do_date' or dt=date_add('$do_date',-1)) and date_format(payment_time,'yyyy-MM-dd')='$do_date' ) group by sku_id ), tmp_refund as ( select sku_id, count(*) refund_count, sum(refund_num) refund_num, sum(refund_amount) refund_amount from ${APP}.dwd_fact_order_refund_info where dt='$do_date' group by sku_id ), tmp_cart as ( select sku_id, count(*) cart_count, sum(sku_num) cart_num from ${APP}.dwd_fact_cart_info where dt='$do_date' and date_format(create_time,'yyyy-MM-dd')='$do_date' group by sku_id ), tmp_favor as ( select sku_id, count(*) favor_count from ${APP}.dwd_fact_favor_info where dt='$do_date' and date_format(create_time,'yyyy-MM-dd')='$do_date' group by sku_id ), tmp_appraise as ( select sku_id, sum(if(appraise='1201',1,0)) appraise_good_count, sum(if(appraise='1202',1,0)) appraise_mid_count, sum(if(appraise='1203',1,0)) appraise_bad_count, sum(if(appraise='1204',1,0)) appraise_default_count from ${APP}.dwd_fact_comment_info where dt='$do_date' group by sku_id ) insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date') select sku_id, sum(order_count), sum(order_num), sum(order_amount), sum(payment_count), sum(payment_num), sum(payment_amount), sum(refund_count), sum(refund_num), sum(refund_amount), sum(cart_count), sum(cart_num), sum(favor_count), sum(appraise_good_count), sum(appraise_mid_count), sum(appraise_bad_count), sum(appraise_default_count) from ( select sku_id, order_count, order_num, order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_order union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, payment_count, payment_num, payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_payment union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, refund_count, refund_num, refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_refund union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, cart_count, cart_num, 0 favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_cart union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, favor_count, 0 appraise_good_count, 0 appraise_mid_count, 0 appraise_bad_count, 0 appraise_default_count from tmp_favor union all select sku_id, 0 order_count, 0 order_num, 0 order_amount, 0 payment_count, 0 payment_num, 0 payment_amount, 0 refund_count, 0 refund_num, 0 refund_amount, 0 cart_count, 0 cart_num, 0 favor_count, appraise_good_count, appraise_mid_count, appraise_bad_count, appraise_default_count from tmp_appraise )tmp group by sku_id; insert overwrite table ${APP}.dws_sale_detail_daycount partition(dt='$do_date') select op.user_id, op.sku_id, ui.gender, months_between('$do_date', ui.birthday)/12 age, ui.user_level, si.price, si.sku_name, si.tm_id, si.category3_id, si.category2_id, si.category1_id, si.category3_name, si.category2_name, si.category1_name, si.spu_id, op.sku_num, op.order_count, op.order_amount from ( select user_id, sku_id, sum(sku_num) sku_num, count(*) order_count, sum(total_amount) order_amount from ${APP}.dwd_fact_order_detail where dt='$do_date' group by user_id, sku_id )op join ( select * from ${APP}.dwd_dim_user_info_his where end_date='9999-99-99' )ui on op.user_id = ui.id join ( select * from ${APP}.dwd_dim_sku_info where dt='$do_date' )si on op.sku_id = si.id; " $hive -e "$sql"
2)增加脚本执行权限
chmod 770 dwd_to_dws.sh
3)执行脚本导入数据
dwd_to_dws.sh 2020-03-11
4)查看导入数据
select * from dws_uv_detail_daycount where dt='2020-03-11'; select * from dws_user_action_daycount where dt='2020-03-11'; select * from dws_sku_action_daycount where dt='2020-03-11'; select * from dws_sale_detail_daycount where dt='2020-03-11';