数据标准化
大型数据分析项目中,数据来源不同,量纲及量纲单位不同,为了让它们具备可比性,需要采用标准化方法消除由此带来的偏差。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。这就是数据标准化。
对单个指标进行比较,假设对3名新生婴儿体重(5,6,7)和3名成年人的体重(150,151,152)差异的大小进行对比分析,从表面上看,两组人员的平均差异均为1斤,由此便得出两组人员的体重差异程度相同显然是不合适,因为两者的体重水平不在同一等级上,即量纲不同;
对多个指标进行综合分析,假设对商品的运营指标销售量、销售额、浏览量进行综合评价或聚类分析,由于各指标间的水平相差很大,如果直接进行分析会突出数值较高的指标在综合分析中的作用,从而使各个指标以不等权参与运算。
因此,常常需要先对数据进行标准化,对各统计指标进行无量纲化处理,消除量纲影响和变量自身变异大小和数值大小的影响。
数据标准化的常用方法
Max-Min标准化/离差标准化
Max-Min标准化也称为离散标准化,是对原始数据的线性变换,将数据值映射到[0, 1]之间。
转换公式为:x’=(x-min)/(max-min),其中max为样本的最大值,min为样本的最小值。
离差标准化保留了原来数据中存在的关系,是消除量纲和数据取值范围影响的最简单方法。其缺陷是当有新数据加入时,可能导致max或min的变化,转换函数需要重新定义。
Z-score 标准化/标准差标准化/零均值标准化
Z-score也称标准差标准化,经过处理的数据的均值为0,标准差为1。
转化公式为:x’=(x-μ)/σ,其中μ为所有样本数据的均值,σ为所有样本数据的标准差。
该方法对离群点不敏感,当原始数据的最大值、最小值未知或离群点左右了Max-Min标准化时非常有用,Z-Score标准化目前使用最为广泛的标准化方法。
log函数转换
通过以10为底的log函数转换的方法同样可以实现归一下,数据都要大于等于1
转化公式为:x’=log10(x)/log10(max),其中max为样本数据最大值
sklearn数据标准化
sklearn.preprocessing提供了许多方便的用于做数据预处理工具,在数据标准化方面,sklearn.preprocessing提供了几种scaler进行不同种类的数据标准化操作。
示例
对digits.data
数据进行标准化处理。
输出
数据进行标准化处理后,可以将每个属性的分布改为均值为零,标准差为1(单位方差)。
将数据分解为训练子集和测试子集
数据集除了用来训练模型,还需用来评估模型。需要将数据集分为两部分:训练子集和测试子集。
实践中,训练子集和测试子集是不互相覆盖的: 最常见的分割选择是将原始数据集的2/3作为训练集,剩下的1/3将组成测试集。
可以使用train_test_split
函数将数据集随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签。
示例
将数据集随机划分为训练子集和测试子集。
随机数种子
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。随机数种子,其实就是该组随机数的编号,在需要重复试验的时候,种子相同可以保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下,得到的随机数组是一样的,但填0或不填,则每次都会不一样。
输出:
1203 64 1203
可以看到,训练集X_train现在包含1203个样本,正好是原始数据集的2/3,每个样本有64个特征值。y_train训练集也包含原始数据集标签的2/3,测试集X_test和y_test各自包含剩下的594个样本。