• word linkage 选择合适的聚类个数matlab code


    clear
    load fisheriris
    X = meas;
    m  = size(X,2);
     % load machine
    %  load census
    % % X = meas;
    % X=X(1:2000,:);
    d = pdist(X,'euclidean');
    
    Z = linkage(d,'ward');%Create a hierarchical binary cluster tree using linkage
    % [Hr,Tr]=dendrogram(Z, 0);  %generates a dendrogram plot of the hierarchical binary cluster tree
    % h_gca = gca;
    % h_gca.TickDir = 'out';
    % h_gca.TickLength = [.002 0];
    % h_gca.XTickLabel = [];
    % c = cluster
    
    val0=eval(vpa(Z(:,3),5));
    
    t=1; n(1)=0; val=val0(1); f(1)=val;
    for i=1:length(val0)
        if val0(i)==val
            n(t)=n(t)+1;
            continue
        else
            t=t+1;
            val=val0(i);
            n(t)=1;
            f(t)=val;
            continue
        end
    end
    figure(2)
    fsum=cumsum(n);
    x= length(val0)-fsum;
    plot(x, f, 'o-','LineWidth', 2)
    xlabel('Number of Clusters')
    ylabel('Merge Distance')
    title('A sample evalution graph')
    
    % for i = 1: length(x)
    %     y= cluster(Z, x(i));
    %     B = Amean(X, y)
    % end
    
    x =x(end:-1:1);
    f=f(end:-1:1);
    
    i=0;
    flag = 1;  b =  length(x); minerror_c_old = b-1;
    while flag ~=0 & b>=20
        RMSE = [];
        for c = 2: (b-2)
            x1 = x(1:c); y1 = f(1 : c);
            x2 = x(c:b); y2 = f(c : b);
            [~, s1] = polyfit(x1, y1,1);
            [~, s2] = polyfit(x2, y2,1);
            RMSE(c-1) = ((c-1)/(b-1))*s1.normr + ( (b-c)/(b-1))*s2.normr;
        end
         [~, minerror_c ]= min(RMSE);
         minerror_c= minerror_c+1;
         if  minerror_c >= minerror_c_old
             break
         else
             minerror_c_old = minerror_c;
    %           b = b -1;
              b = 2*minerror_c ;
         end
         i=i+1
    end
    
    hold on 
    plot(x( minerror_c), f( minerror_c),'ro')
    c =x( minerror_c)
    
    labels = cluster(Z, c);
    
    labs = unique(labels);
    CORR = zeros();
    for i = 1:length(labs)
        corri = cov(X(labels == i, :)); 
        CORR = CORR +  corri; 
    end
    

      

  • 相关阅读:
    redux-simple 简化版的redux
    react服务端渲染(同构)
    使用systemd管理程序进程
    使用Dockerfile构建镜像
    centos7使用supermin制作centos7的docker镜像包
    DNS-dnsmasq安装配置
    kubernetes-部署(单机,使用证书)
    DNS-bind+namedmanager安装
    python3第一个脚本(hello world!)
    Python3 基础语法
  • 原文地址:https://www.cnblogs.com/huadongw/p/4619770.html
Copyright © 2020-2023  润新知